Computer simulation of crystallographic orientations influence on earing during drawing

Cover Page

Cite item

Full Text

Abstract

The practical implementation of the user material model, which takes into account the ideal crystallographic orientations, is illustrated in terms of drawing process simulation. The material model consists of the following elements: yield criterion, which takes into account explicitly the parameters of crystallographic orientation and the crystal lattice constants; linear isotropic hardening model; the tangent cutting plane algorithm for updating stresses. The model is implemented on the FORTRAN programming language as user material UMAT 47 for the software LS-DYNA. The drawing of caps made of 8011A aluminum alloy is simulated using the model. The blank texture consists only of one ideal crystallographic orientation: {124}<123>, {230}<231>, {135}<130> and {100}<100>. It is found that the stress-strain state of anisotropic axisymmetric blank during drawing changes both in the radial and tangential directions. In the direction of the minimum values of tensile radial strains the blank thickening occurs more intensively. Whereby a significant portion of the flange metal moves in the thickness and leads to the formation of cavities. In the places with maximum values of the radial strains the flange thickening is significantly less. Hence, the metal goes on increase of the cap height, forming an ear. It is determined that ideal crystallographic orientation {124}<123> causes formation of 4 ears at angle 45° to rolling direction, while orientations {230}<231>, {135}<130>, {100}<100> causes ears at rolling and transverse directions. Also it is shown that one possible combination of ideal crystallographic orientations, which eliminates earing and non-uniform thickness of cap, is the following: {124}<123> - 43,9%; {135} <130> - 29,2%; {230}<231> - 25,6%; {100}<100> - 1,3%. In addition, the influence of the ideal crystallographic orientations on the drawing force is studied. It is found that the drawing force of blanks with different orientations changes by more than 20% ({100} <100> - maximum force; {230} <231>, {135} <130> - minimum force).

About the authors

Y. A Erisov

Samara State Aerospace University (National Research University)

Email: yaroslav.erisov@mail.ru
34, Moskovskoye shosse, Samara, 443086, Russian Federation

S. V Surudin

Samara State Aerospace University (National Research University)

Email: innosam63@gmail.com
34, Moskovskoye shosse, Samara, 443086, Russian Federation

A. T Tiabashvili

Samara State Aerospace University (National Research University)

Email: tiabashvili94@mail.ru
34, Moskovskoye shosse, Samara, 443086, Russian Federation

F. V Grechnikov

Samara State Aerospace University (National Research University); Samara Scientific Center of the Russian Academy of Sciences

Email: gretch@ssau.ru
34, Moskovskoye shosse, Samara, 443086, Russian Federation; 3A, Studencheskiy per., Samara, 443001, Russian Federation

References

  1. Continuum scale simulation of engineering materials: fundamentals, microstructures, process applications / ed. by D. Raabe, F. Roters, F. Barlat, L.Q. Chen. - Berlin: Wiley, 2004. - 885 p. - ISBN 978-3-527-30760-9. - doi: 10.1002/3527603786.
  2. Рыбин Ю.И., Рудской А.И., Золотов А.М. Математическое моделирование и проектирование технологических процессов обработки металлов давлением. - М.: Наука, 2004. - 644 с. - ISBN 5-02-025040-6.
  3. Owen D.R.J., Hinton E. Finite elements in plasticity: theory and practice. - London: Pineridge Press, 1980. - 450 p. - ISBN-10: 0906674050. - ISBN-13: 978-0906674055.
  4. Neto E.A. de Souza, Perić D., Owen D.R.J. Computational methods for plasticity: theory and applications. - Chichester, West Sussex, UK: Wiley, 2008. - 814 p. - ISBN-10: 0470694521. - ISBN-13: 978-0470694527.
  5. Dunne F., Petrinic N. Introduction to computational plasticity. - Oxford: Oxford University Press, 2005. - 258 p. - ISBN-10: 0198568266. - ISBN-13: 978-0198568261.
  6. Han W., Reddy B.D. Plasticity: mathematical theory and numerical analysis. - Berlin; New York: Springer-Verlag, 2013. - 424 p. - ISBN 978-1-4614-5939-2. - doi: 10.1007/978-1-4614-5940-8.
  7. Hutchinson W.B., Oscarsson A., Karlsson A. Control of microstructure and earing behaviour in aluminium alloy AA 3004 hot bands // Materials Science and Technology. - 1989. - Vol. 5, iss. 11. - P. 1118-1127. - doi: 10.1179/mst.1989.5.11.1118.
  8. Гречников Ф.В. Деформирование анизотропных материалов: резервы интенсификации. - М.: Машиностроение, 1998. - 446 с. - ISBN 5-217-02892-0.
  9. Engler O., Hirsch J. Texture control by thermomechanical processing of AA6xxx Al-Mg-Si sheet alloys for automotive applications - a review // Materials Science and Engineering: A. - 2002. - Vol. 336, iss. 1-2. - P. 249-262. - doi: 10.1016/S0921-5093(01)01968-2.
  10. Formability of metallic materials: plastic anisotropy, formability testing, forming limits / D. Banabic, H.J. Bunge, K. Pohlandt, A.E. Tekkaya. - Berlin: Springer, 2000. - 334 p. - ISBN 978-3-540-67906-6. - doi: 10.1007/978-3-662-04013-3.
  11. Tóth L.S., Hirsch J., Houtte P. van. On the role of texture development in the forming limits of sheet metals // International Journal of Mechanical Sciences. - 1996. - Vol. 38, iss. 10. - P. 1117-1126. - doi: 10.1016/0020-7403(95)00110-7.
  12. Barlat F. Crystallographic texture, anisotropic yield surfaces and forming limits of sheet metals // Materials Science and Engineering. - 1987. - Vol. 91. - P. 55-72. - doi: 10.1016/0025-5416(87)90283-7.
  13. A manufacturability improvement of glass fiber reinforced aluminum laminate by forming an effective crystallographic texture in V95 alloy sheets / F.V. Grechnikov, V.V. Antipov, Y.A. Erisov, A.F. Grechnikova // Russian Journal of Non-Ferrous Metals. - 2015. - Vol. 56, iss. 1. - P. 39-43. - doi: 10.3103/S1067821215010095.
  14. Peters M., Gysler A., Lotjering G. Influence of texture on fatigue properties of Ti-6Al-4V // Metallurgical Transactions: A. - 1984. - Vol. 15, iss. 8. - P. 1597-1605. - doi: 10.1007/BF02657799.
  15. A comparison of fatigue-crack propagation behavior in sheet and plate aluminum-lithium alloys / K.T.V. Rao, R.J. Bucci, K.V. Jata, R.O. Ritchie // Materials Science and Engineering: A. - 1991. - Vol. 141, iss. 1. - P. 39-48. - doi: 10.1016/0921-5093(91)90705-R.
  16. The orientation dependence of fatigue-crack growth in 8090 Al-Li plate / X.J. Wu, W. Wallace, M.D. Raizenne, A.K. Koul // Metallurgical and Materials Transactions: A. - 1994. - Vol. 25, iss. 3. - P. 575-588. - doi: 10.1007/BF02651599.
  17. Advances in anisotropy and formability / D. Banabic, F. Barlat, O. Cazacu, T. Kuwabara // International Journal of Material Forming. - 2010. - Vol. 3, iss. 3. - P. 165-189. - doi: 10.1007/s12289-010-0992-9.
  18. Гречников Ф.В., Ерисов Я.А. Математическая модель анизотропного упругопластического материала // Вестник Самарского государственного аэрокосмического университета. - 2011. - № 6 (30). - С. 73-80.
  19. Grechnikov F.V., Erisov Y.A. Virtual material model with the given crystallographic orientation of the structure // Key Engineering Materials. - 2016. - Vol. 684. - P. 134-142. - doi: 10.4028/ href='www.scientific.net/KEM.684.134' target='_blank'>www.scientific.net/KEM.684.134.
  20. Гречников Ф.В., Ерисов Я.А. Разработка критерия пластичности для расчетов формообразования высокотекстурированных анизотропных заготовок // Вестник Самарского государственного аэрокосмического университета. - 2012. - № 1 (32). - С. 94-99.
  21. Chakrabarty J. Applied plasticity. - 2nd ed. - Berlin: Springer, 2010. - 758 p. - ISBN 978-0-387-77673-6. - doi: 10.1007/978-0-387-77674-3.
  22. Ерисов Я.А., Гречников Ф.В., Сурудин С.В. UMAT47 (программа для ЭВМ): свидетельство о государственной регистрации программы для ЭВМ № 2014662658. - Заявл. 15.10.2014; опубл. 20.01.2015, Бюл. № 1.
  23. Гречников Ф.В., Арышенский Е.В., Ерисов Я.А. Проектирование технологических режимов прокатки листов и лент для вытяжки изделий с минимальным фестонообразованием // Вестник Самарского государственного аэрокосмического университета. - 2011. - № 2 (26). - С. 158-167.
  24. Адамеску Р.А., Гельд П.В., Митюшин Е.А. Анизотропия физических свойств металлов. - М.: Металлургия, 1985. - 137 с.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).