Investigation of the structure and phase composition of Ti and Nb powders after mechanical activation

Cover Page

Cite item

Full Text

Abstract

Features of structure and phase composition of the powders of Ti and Nb after mechanical activation are investigated by the methods of X-ray diffraction, scanning electron microscopy and energy-dispersive microanalysis. The powders were mixed in mass ratio 60 % Ti and 40 % Nb in planetary mill AGO-2C during 10, 15 and 20 minutes. Water-cooled camera was used to reduce the temperature of the process. It is shown that during the process of mechanical activation the powder of two-component composition is obtained. During the process of severe plastic deformation and mixing particles of Ti and Nb are combined into larger objects. The agglomerates with scale structure are formed. The size distribution of powder particles is characterized by bimodal type. Most particles have a size from 10 to microns. A smaller part of formed particles has a size of about 100 microns. As a result of treatment time increasing the scatter of the powder granulometric composition is reduced with shifting to lower values. It was observed that during activation time increase the content of Nb saluted in Ti increases and reaches composition Ti37Nb at 20 minutes of activation. Ti and Nb are equilibrium distributed inside the particles. Herewith the main β-phase forms rom phases of initial components. β-phase is the substitutional solid solution of Ti and Nb. The β-phase quantity increases with the activation time increasing. The phase of initial α-Ti is retained in the alloy throughout the treatment time. Increasing of treatment time or using of additive factors which enhance the effect of mechanical activation is necessary to complete the process of monophase alloy formation. It is shown in conclusion that the form and granulometric composition of obtained Ti-Nb alloy powder, its phase composition with equilibrium distribution of components allow use it in additive technology of selective laser sintering.

About the authors

Yu. P Sharkeev

Institute of Strength Physics and Materials Science of the Siberian Branch of the RAS; National Research Tomsk Polytechnic University

Email: sharkeev@ispms.tsc.ru
2/4, Academichesky ave., Tomsk, 634021, Russian Federation; 30, Lenin Avenue, Tomsk, 634050, Russian Federation

Zh. G Kovalevskaya

National Research Tomsk Polytechnic University; Institute of Strength Physics and Materials Science of the Siberian Branch of the RAS

Email: zhanna_kovalevskaya@mail.ru
30, Lenin Avenue, Tomsk, 634050, Russian Federation; 2/4, Academichesky ave., Tomsk, 634021, Russian Federation

M. A Khimich

National Research Tomsk State University; Institute of Strength Physics and Materials Science of the Siberian Branch of the RAS

Email: makhimich@gmail.com
36, Lenin Avenue, Tomsk, 634050, Russian Federation; 2/4, Academichesky ave., Tomsk, 634021, Russian Federation

E. A Ibragimov

Yurga Institute of Technology, TPU Affiliate

Email: egor83@lisy.ru
26, Leningradskaya st., Yurga, 652055, Russian Federation

A. A Saprykin

Yurga Institute of Technology, TPU Affiliate

Email: sapraa@tpu.ru
26, Leningradskaya st., Yurga, 652055, Russian Federation

V. I Yakovlev

I.I. Polzunov Altai State Technical University

Email: anicpt@rambler.ru
46, Lenina avenue, Barnaul, Altai region, 656038, Russian Federation

V. A Bataev

Novosibirsk State Technical University

Email: bataev@adm.nstu.ru
20, Prospect K. Marksa, Novosibirsk, 630073, Russian Federation

References

  1. Болдырев В.В. Механохимия и механическая активация твердых веществ // Успехи химии. - 2006. - Т. 75, № 3. - С. 203-215.
  2. Механическое легирование / Ю.В. Кузьмич, И.Т. Колесникова, В.И. Серба, Б.М. Фрейдин. - М.: Наука, 2005. - 213 с.
  3. Production of porous β-type Ti-40Nb alloy for biomedical applications: comparison of selective laser melting and hot pressing / K. Zhuravleva, M. Bönisch, K.G. Prashanth, U. Hempel, A. Helth, T. Gemming, M. Calin, S. Scudino, L. Schultz, J. Eckert, A. Gebert // Materials. - 2013. - Vol. 6, iss. 12. - P. 5700-5712. - doi: 10.3390/ma6125700.
  4. Porous low modulus Ti40Nb compacts with electrodeposited hydroxyapatite coating for biomedical applications / K. Zhuravleva, A. Chivu, A. Teresiak, S. Scudino, M. Calin, L. Schults, J. Eckert, A. Gebert // Materials Science and Engineering: C. - 2013. - Vol. 33, iss. 4. - P. 2280-2287. - doi: 10.1016/j.msec.2013.01.049.
  5. Comparison of activation technologies powder ECP-1 for the synthesis of products using SLS / E.V. Babakova, A.V. Gradoboev, A.A. Saprykin, E.A. Ibragimov, V.I. Yakovlev, A.V. Sobachkin // Applied Mechanics and Materials. - 2015. - Vol. 756. - P. 220-224. - doi: 10.4028/ href='www.scientific.net/AMM.756.220' target='_blank'>www.scientific.net/AMM.756.220.
  6. Saprykin A.A., Ibragimov E.A., Yakovlev V.I. Influence of mechanical activation of powder on SLS process // Applied Mechanics and Materials. - 2014. - Vol. 682. - P. 143-147. - doi: 10.4028/ href='www.scientific.net/AMM.682.143' target='_blank'>www.scientific.net/AMM.682.143.
  7. Sintering behavior and mechanical properties of a metal injection molded Ti-Nb binary alloy as biomaterial / D. Zhao, K. Chang, T. Ebel, H. Nie, R. Willumeit, F. Pyczak // Journal of Alloys and Compounds. - 2015. - Vol. 640. - P. 393-400. - doi: 10.1016/j.jallcom.2015.04.039.
  8. Dynamic diffractometry of phase transformations during high-temperature synthesis in mechanically activated powder systems in the thermal explosion mode / A.A. Popova, A.V. Sobachkin, I.V. Nazarov, V.I. Yakovlev, M.V. Loginova, A.A. Sitnikov // Bulletin of the Russian Academy of Sciences: Physics. - 2013. - Vol. 77, iss. 2. - P. 120-122. - doi: 10.3103/S1062873813020275.
  9. Динамический тепловой взрыв в механически активированных порошковых смесях / В.В. Евстигнеев, Е.В. Смирнов, А.В. Афанасьев, В.Ю. Филимонов, В.И. Яковлев, М.В. Логинова // Ползуновский вестник. - 2007. - № 4. - С. 162-167.
  10. Nouri A., Hodgson P.D., Wen C. Effect of ball-milling time on the structural characteristics of biomedical porous Ti-Sn-Nb alloy // Materials Science and Engineering: C. - 2011. - Vol. 31, iss. 5. - P. 921-928. - doi: 10.1016.j.msec.2011.02.011.
  11. Huang H.S., Lin Y.C., Hwang K.S. Effect of lubricant addition on the powder properties and compacting performance of spray-dried molybdenum powders // International Journal of Refractory Metals & Hard Materials. - 2002. - Vol. 20, iss. 3. - P. 175-180. - doi: 10.1016/S0263-4368(01)00062-2.
  12. Рахманкулов М.М. Металлургия стратегических металлов и сплавов. - М.: Теплотехник, 2008. - 504 с. - ISBN 5-9845707-4-2.
  13. Константинов В.И. Электролитическое получение тантала, ниобия и их сплавов. - М.: Металлургия, 1977. - 240 с.
  14. Носова Г.И. Фазовые превращения в сплавах титана. - М.: Металлургия, 1968. - 180 с.
  15. Mechanical alloying of β-type Ti-Nb for biomedical applications / K. Zhuravleva, S. Scudino, M.S. Khoshkhoo, A. Gebert, M. Calin, L. Schultz // Advanced Engineering Materials. - 2013. - Vol. 15, iss. 4. - P. 262-268. - doi: 10.1002/adem.201200117.
  16. Phase transformations in ball-milled Ti-40Nb and Ti-45Nb powders upon quenching from the β-phase region / K. Zhuravleva, M. Bönisch, S. Scudino, M. Calin, L. Schultz, J. Eckert, A. Gebert // Powder Technology. - 2014. - Vol. 253. - P. 166-171. - doi: 10.1016/j.powtec.2013.11.002.
  17. Сметкин А.А. Исследование эволюции порошковой интерметаллической системы «титан-алюминий» при механическом легировании и консолидации // Вестник Пермского национального исследовательского политехнического университета. Машиностроение, материаловедение. - 2010. - Т. 12, № 2. - С. 22-30.
  18. Исследование взаимодействия серпентина с железом при формировании покрытий на поверхности стальных деталей / Ж.Г. Ковалевская, П.В. Уваркин, С.В. Веселов, А.И. Толмачев, М.А. Химич // Обработка металлов (технология, оборудование, инструменты). - 2012. - № 3 (56). - С. 120-123.
  19. Шишковский И.В. Лазерный синтез функционально-градиентных мезоструктур и объемных изделий. - М.: Физматлит, 2009. - 417 с. - ISBN 978-5-9221-1122-5.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).