Optimization of multifunction machines constructions with required accuracy and productivity

Cover Page

Cite item

Full Text

Abstract

One of the main criteria of the supporting constructions (column, spindle head, bed) of the multifunction machine is the mass of constructions. It is required to find such distribution of material in the supporting constructions whereby conditions of strength reliability are satisfied with minimum possible mass. Supporting system, consisting of these optimum supporting constructions, has to provide the precision and productivity of machining. In order to support business objectives, the technology of rational designing of supporting constructions, offered by us, uses the principle of decomposition and the integrated work of the finite elements method with optimization methods. The main stages of this technology - optimization of the supporting system of the machine with the supporting constructions simplified on geometry and optimum design of the individual supporting constructions for definition of real geometry of cross section are considered. Calculation of the supporting system with the simplified supporting constructions (without edges of rigidity, partitions, etc.) is made for limit and operating conditions of working. Calculations showed that in the stage of the machine supporting system modeling for typical operating conditions the mass of the supporting system due to optimization is 35% less than the production version. Active restrictions in strain of an end face of a spindle in the direction of action increases the cutting force. Due to high dimension of calculation models of the supporting constructions it is offered to use the substructure at a stage of optimum design of the individual supporting constructions on the basis of the principle of decomposition. The calculated strain field of the optimal column substructure is consistent with the strain field of the column, which is obtained when calculating the machine supporting system, consisting of simplified supporting constructions at satisfaction of precision standards of working. Restriction on the allowed strain for knots on an axis of y (0.45 ∙ 10-6) is strictly carried out, and on the rest settlement strains there are less than allowed. The turning angle of the optimal column with real cross-section is less, than the turning angle of the column as part of supporting system with the supporting constructions of simplified geometry - 0.0778 rad and 0.1495 rad, respectively, i.e. torsion rigidity of the optimal column is higher. As a result of optimum design, a mass of the pallet, consisting of the moving-rotary table, is reduced by 35.5 % in comparison with a production version.

About the authors

V. G Atapin

Novosibirsk State Technical University

Email: teormech@ngs.ru
20, Prospect K. Marksa, Novosibirsk, 630073, Russian Federation

References

  1. Атапин В.Г. Расчет деформированного состояния фундамента тяжелого многоцелевого станка // Вестник машиностроения. - 1989. - № 6. - С. 31-32.
  2. Витес Б.И., Гроссман В.М., Кравцов О.А. Проектирование корпусных деталей металлорежущих станков с использованием метода конечных элементов // Станки и инструмент. - 1991. - № 5. - С. 13-14.
  3. Пахмутов В.А., Шалдыбин А.Я. Использование метода конечных элементов для анализа конструкций базовых деталей тяжелых станков // СТИН. - 1992. - № 2. - С. 11-13.
  4. Lull B. Statische und dynamische berechnung von werkzeugmaschinengestellen // Maschinenbautechnik. - 1977. - Vol. 26, N 1. - P. 10-13.
  5. Roscher A. Berechnung der dynamischen eigenschaften von werkzeugmaschinengestellen mit hilfe der methode der finiten elemente // Maschinenbautechnik. - 1978. - Vol. 27, N 4. - P. 156-160.
  6. Haug E.J., Choi K.K., Komkov V. Design sensitivity analysis of structural systems. - Orlando, Florida: Academic Press, 1986. - 381 p. - (Mathematics in Science and Engineering; vol. 177).
  7. Rao S.S., Grandhi R.V. Optimum design of radial drilling machine structure to satisfy static rigidity and natural frequency requirements // Journal of Mechanical Design. - 1983. - Vol. 105, iss. 2. - P. 236-241. - doi: 10.1115/1.3258515.
  8. Reddy C.P., Rao S.S. Automated optimum design of machine-tool structures for static rigidity, natural frequencies and regenerative chatter stability // Journal of Manufacturing Science and Engineering. - 1978. - Vol. 100, iss. 2. - P. 137-146. - doi: 10.1115/1.3439401.
  9. Yoshimura M., Takeuchi Y., Hitomi K. Design optimization of machine-tool structures considering manufacturing cost, accuracy and productivity // Journal of Mechanical Design. - 1984. - Vol. 106, iss. 4. - P. 531-537. - doi: 10.1115/1.3258606.
  10. Каминская В.В., Гильман А.М., Егоров Ю.Б. Об автоматизированных расчетах оптимальных размеров деталей и узлов станков // Станки и инструмент. - 1975. - № 3. - С. 2-5.
  11. Каминская В.В., Гильман А.М. Оптимизация параметров несущих систем карусельных станков // Станки и инструмент. - 1978. - № 10. - С. 6-7.
  12. Хомяков В.С., Яцков А.И. Оптимизация несущей системы одностоечного токарно-карусельного станка // Станки и инструмент. - 1984. - № 5. - С. 14-16.
  13. Ravindran A., Ragsdell K.M., Reklaitis G.V. Engineering Optimization: methods and applications. - 2nd ed. - New Jersey: John Wiley & Sons, 2006. - 688 p. - ISBN-10: 0-471-55814-1. - ISBN-13: 978-0-471-55814-9.
  14. Bunday B.D. Basic optimisation methods. - London: Edward Arnold, 1984. - 136 p. - ISBN-13: 978-0-713-13506-0. - ISBN: 0-713-13506-9.
  15. Атапин В.Г., Гапонов И.Е., Павин А.Г. Автоматизация проектирования тяжелых многоцелевых станков // I Всесоюзный съезд технологов-машиностроителей: тезисы докладов. - М., 1989. - С. 42-43.
  16. Атапин В.Г. Сопротивление материалов: учебник. - M.: Юрайт, 2015. - 432 с. - ISBN 978-5-9916-5203-2.
  17. Каминская В.В., Левина З.М., Решетов Д.Н. Станины и корпусные детали металлорежущих станков. - М.: Машгиз, 1960. - 362 с.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).