Dynamic instability of the flight control connecting rod in technological tests
- Authors: Atapin V.G1
-
Affiliations:
- Novosibirsk State Technical University
- Issue: No 3 (2017)
- Pages: 35-41
- Section: EQUIPMENT. INSTRUMENTS
- URL: https://journals.rcsi.science/1994-6309/article/view/302109
- DOI: https://doi.org/10.17212/1994-6309-2017-3-35-41
- ID: 302109
Cite item
Full Text
Abstract
For technological control strength of the flight control connecting rod (further rod) selective destructive tests of ready details in static and pulsating axial loads are used. In order to decrease the time and to use non-destructive control methods rods are tested on the experimental installation, which has the two-mass oscillating system. The oscillating system consists of a rod with two identical tipweights and hanging on a thin steel string vertically. A rod under action a longitudinal force P ( t )= = P cos Ω t has the resonant longitudinal oscillations which occur in actual use. A rod is the resonant longitudinal oscillations for the second natural form. The first natural form corresponds to the movement of a rod with end loads as a rigid body and has no practical interest. Experiments showed that there is a dynamic instability in the form of parametric resonance of longitudinal oscillations. In this case, besides the longitudinal oscillations further transverse (bending) oscillations appear. It is interesting to determine the conditions for the emergence of parametric resonance of a rod in the process of technological tests. The analytical solution of the problem results in the Mathieu’s equation. The results of solving this equation for various combinations of the coefficients of the equation represented as Ince-Strutt diagram. The calculation of the Mathieu’s equation of the rod with dimensions D × d × l = 35 × 32 × 1200 (mm) shows that at operating stress of 10 MPa the rod works in the zone of dynamic instability. This fact is confirmed experimentally. Experiment with the short rod by dimensions D × d × l = 25×22×600 (mm) showed that the rod is experiencing longitudinal oscillations without transverse oscillations up to stress 68 MPa. Thus, the short rods have a bigger range of working stresses at the experimental installation. The Mathieu’s equation is valid for all rod sizes. The equation allows determining such parameters of the oscillating system, in which the rod would experience only the longitudinal oscillations, which takes place in real conditions.
About the authors
V. G Atapin
Novosibirsk State Technical University
Email: atapin.49@mail.ru
20, Prospect K. Marksa, Novosibirsk, 630073, Russian Federation
References
- Туманов А.Т. Методы испытания, контроля и исследования машиностроительных материалов: справочное пособие. Т.1. - М.: Машиностроение, 1974. - 320 с.
- Испытательная техника. В 2 кн. Кн. 2: справочник / Г.С. Батуев, В.С. Голубков, В.В. Клюев, А.С. Больших; под ред. В.В. Клюева. - М.: Машиностроение, 1982. - 560 с.
- Неразрушающий контроль металлов и изделий: справочник / под ред. Г.С. Самойловича. - М.: Машиностроение, 1976. - 456 с.
- Болотин В.В. Динамическая устойчивость упругих систем. - М.: Гостехиздат, 1956. - 600 с.
- Пановко Я.Г. Основы прикладной теории колебаний и удара. - М.: Либроком, 2010. - 274 с. - ISBN 978-5-397-01066-5.
- Прочность, устойчивость, колебания. Т. 3: cправочное руководство / под ред. И.А. Биргера и Я.Г. Пановко. - М.: Машиностроение, 1968. - 568 с.
- Атапин В.Г. Сопротивление материалов. - М.: Юрайт, 2016. - 342 с. - ISBN 978-5-534-01762-5.
- Вольмир А.С., Григорьев А.И., Станкевич А.И. Сопротивление материалов. - М.: Дрофа, 2007. - 592 с. - ISBN 978-5-358-01283-7.
- Pol B. van der, Strutt M.J. On the stability of the solutions of Mathieu’s equation // Philosophical Magazine. - 1928. - Vol. 5. - P. 18-38.
- Нестеров А.В., Нестеров С.В. Исследование решений уравнения Матье в первой области устойчивости при моделировании нестационарных объектов управления // Математическое и программное обеспечение систем в промышленной и социальной сферах. - 2011. - № 1-1. - С. 102-107.
- Грибков В.А., Хохлов А.О. Прием, упрощающий решение задачи устойчивости параметрически стабилизируемых статически неустойчивых маятниковых систем // Известия высших учебных заведений. Машиностроение. - 2015. - № 11 (668). - С. 29-38. - doi: 10.18698/0536-1044-2015-11-29-38.
- Arkhipova I.M., Luongo A., Seyranian A.P. Vibrational stabilization of the upright statically unstable position of a double pendulum // Journal of Sound and Vibration. - 2012. - Vol. 331, iss. 2. - P. 457-469. - doi: 10.1016/j.jsv.2011.09.007.
- Parovik R.I. Fractal parametric oscillator as a model of a nonlinear oscillation system in natural mediums // International Journal of Communications, Network and System Sciences. - 2013. - Vol. 6, N 3. - P. 134-138. - doi: 10.4236/ijcns.2013.63016.
- Rand R.H., Sah S.M., Suchrsky M.K. Fractional Mathieu equation // Communications in Nonlinear Science and Numerical Simulation. - 2010. - Vol. 15. - P. 3254-3262.
- Паровик Р.И. Диграммы Стретта-Айнса для обобщенного уравнения Матье // Вестник КРАУНЦ. Физико-математические науки. - 2012. - Т. 4, № 1. - C. 24-30. - doi: 10.18454/2079-6641-2012-4-1-24-30.
Supplementary files

