Structure and Properties of Heat-treated Medium-carbon Steels Alloyed with Copper

Cover Page

Cite item

Full Text

Abstract

Introduction. Copper alloyed steel is considered to be a possible alternative to expensive bronze in the manufacture of large-sized parts of heavy-duty sliding friction units. The operating conditions of these units assume the presence of large specific loads. Thus, the materials for its production should have a high complex of strength and tribological properties. Quenched iron-carbon steels have the greatest strength, however, nowadays, the issue of the effect of copper on the structure and properties of medium-carbon steels after quenching remains open. The purpose of the work: to study the structure, strength and tribotechnical properties of cast medium-carbon steel, alloyed with copper (0 ... 9 wt. %), after quenching from 800, 900, 1000 and 1150 °C and low tempering at 200 °C. The methods of investigation. Structural studies were performed using optical metallography, scanning electron microscopy and X-ray phase analysis. The mechanical properties of alloys after casting and quenching with low tempering were studied, the hardness of the Rockwell materials was evaluated, and the wear resistance test was carried out on fixed and non-rigidly fixed abrasive particles. Results and discussion. With the increase of copper content in the steel the size of the ferritic grains decreases and the dispersion of perlite increases. The nanosized inclusions of the copper ε-phase formed in the ferrite matrix were studied by transmission electron microscopy. Heating up to 800 °C doesn’;t provide an opportunity for complete quenching of steels alloyed with copper. In addition to martensite, the microvolumes of ferrite and perlite are present in the structure of alloys. Quenching from 900 °C leads to the formation of a completely martensitic structure. A further increase in the quenching temperature doesn’;t lead to a qualitative change in the structural composition. Inclusions of the copper phase predominantly have a shape close to spherical. However, after quenching from 1150 °С in an alloy with 9% copper, the ε-Cu inclusions precipitates as a thin films along the former boundaries of austenitic grains. The TEM investigations showed that heating for quenching leads to dissolution of copper nanosized inclusions. At the fast cooling stage, copper in the form of inclusions is not released. Alloying with copper up to 6 wt. % provides the growth of tribotechnical characteristics of medium-carbon steels. It was found that samples quenched from 900 °C have the highest complex of mechanical properties.

About the authors

T. S. Ogneva

Email: ogneva@corp.nstu.ru
Ph.D. (Engineering), Novosibirsk State Technical University, ogneva@corp.nstu.ru

N. V. Martyushev

Email: martjushev@tpu.ru
Ph.D. (Engineering), Associate Professor, National Research Tomsk Polytechnic University, martjushev@tpu.ru

I. Altpeter

Email: irisaltpeter@mail.ru
D.Sc. (Engineering), Fraunhofer Institute for Non-Destructive Testing IZFP, irisaltpeter@mail.ru

M. A. Surkov

Email: masur@tpu.ru
Ph.D. (Engineering), National Research Tomsk Polytechnic University, masur@tpu.ru

A. O. Tokarev

Email: aot51@ngs.ru
D.Sc. (Engineering), Associate Professor, Siberian State University of Water Transport, aot51@ngs.ru

T. M. Krutskaya

Email: j_krutskii@rambler.ru
Ph.D. (Chemical), Associate Professor, Novosibirsk State University of Architecture and Civil Engineering, j_krutskii@rambler.ru

References

  1. Silman G.I., Kamynin V.V., Goncharov V.V. On the mechanisms of copper effect on structure in cast iron // Metal Science and Heat Treatment. – 2007. – Vol. 49, iss. 7–8. – P. 387–393. – doi: 10.1007/s11041-007-0072-z.
  2. Влияние меди на антифрикционные свойства серых чугунов / Н.В. Степанова, В. Кумар, В.А. Кузнецов, П.А. Попелюх, Е.Д. Головин // Обработка металлов (технология, оборудование, инструменты). – 2012. – № 1 (54). – С. 81–84.
  3. Износостойкость заэвтектоидной стали, легированной медью и алюминием / Н.В. Степанова, А.А. Батаев, А.А. Ситников, Т.Н. Осколкова // Обработка металлов (технология, оборудование, инструменты). – 2015. – № 4 (69). – С. 72–79. – doi: 10.17212/1994-6309-2015-4-72-79.
  4. Sil'man G.I. About retrograde solidus and stratification of melt in the Fe–Cu and Fe–Cu–C systems // Metal Science and Heat Treatment. – 2009. – Vol. 51, iss. 1–2. – P. 19–24. – doi: 10.1007/s11041-009-9120-1.
  5. Peculiarities of the precipitation of nanosized ε-phase copper particles in ferrite plates of lamellar pearlite / I.A. Bataev, N.V. Stepanova, A.A. Bataev, A.A. Nikulina, A.A. Razumakov // Physics of Metals and Metallography. – 2016. – Vol. 117, iss. 9. – P. 901–905. – doi: 10.1134/S0031918X16090015.
  6. Composites of copper and cast iron fabricated via the liquid: In the vicinity of the limits of strength in a non-deformed condition / N.V. Stepanova, I.A. Bataev, Y.-B. Kang, D.V. Lazurenko, A.A. Bataev, A.A. Razumakov, A.M. Jorge Junior // Materials Characterization. – 2017. – Vol. 130. – P. 260–269. – doi: 10.1016/j.matchar.2017.06.025.
  7. Prasetyo Y., Lee S.K., Baek E.R. Effect of copper addition on mechanical properties of nodular indefinite chilled iron (NICI) // Key Engineering Materials. – 2011. – Vol. 457. – P. 386–391. – doi: 10.4028/ href='www.scientific.net/KEM.457.386' target='_blank'>www.scientific.net/KEM.457.386.
  8. Pearlite stabilization by copper on ductile cast iron / M. Tsujikawa, N. Matsumoto, K. Nakamoto, Y. Michiura // Key Engineering Materials. – 2011. – Vol. 457. – P. 151–156. – doi: 10.4028/ href='www.scientific.net/KEM.457.151' target='_blank'>www.scientific.net/KEM.457.151.
  9. Hsu C-H., Lin K-T. A study on microstructure and toughness of copper alloyed and austempered ductile irons // Materials Science and Engineering: A. – 2011. – Vol. 528, iss. 18. – P. 5706–5712. – doi: 10.1016/j.msea.2011.04.035.
  10. Microstructure and mechanical properties of as-cast ductile irons alloyed with manganese and copper / R.K. Dasgupta, D.K. Mondal, T.K. Chakrabarti, A.C. Ganguli // Journal of Materials Engineering and Performance. – 2012. – Vol. 21 (8). – P. 1728–1736. – doi: 10.1007/s11665-011-0058-2.
  11. Investigating the mechanical properties of 0.5% copper and 0.5% nickel austempered ductile iron with different austempering parameters / B. Abdullah, S.K. Alias, A. Jaffar , F.A. Rahim, A. Ramli // Advanced Materials Research. – 2012. – Vol. 383–390. – P. 3313–3319. – doi: 10.4028/ href='www.scientific.net/AMR.383-390.3313' target='_blank'>www.scientific.net/AMR.383-390.3313.
  12. The effect of Cu on the microstructure and the elevated temperature properties of ferritic heat resistant cast iron / K. Choe, S. Lee, M. Kim, K. Lee // Materials Science Forum. – 2010. – Vol. 654–656. – P. 1448–1451. – doi: 10.4028/ href='www.scientific.net/MSF.654-656.1448' target='_blank'>www.scientific.net/MSF.654-656.1448.
  13. Горкунов Д.Н. Триботехника (износ и безызносность): учебник. – 4-е изд., перераб. и доп. – М.: МСХА, 2000. – 616 с. – ISBN 5-94327-004-3.
  14. Ильин А.П., Назаренко О.Б., Рихерт С.В. Влияние суспензии «моторное масло + смесь нанопорошков меди и никеля» на трибологические свойства пары трения «углеродистая сталь – низколегированная сталь» // Известия Томского политехнического университета. – 2004. – Т. 307, № 3. – С. 77–79.
  15. Сильман Г.И., Камынин В.В., Гончаров В.В. Влияние меди на структуру и свойства высокопрочного чугуна с шаровидным графитом // Заготовительные производства в машиностроении. – 2010. – № 6. – С. 43–48.
  16. Sil'man G.I., Kamynin V.V., Tarasov A.A. Effect of copper on structure formation in cast iron // Metal Science and Heat Treatment. – 2003. – Vol. 45, iss. 7–8. – P. 254–258. – doi: 10.1023/A:1027320116132.
  17. Kamynin V.V. Effect of structure on the tribotechnical properties of cast iron // Metal Science and Heat Treatment. – 2007. – Vol. 49, N 7–8. – P. 398–400. – doi: 10.1007/s11041-007-0074-x.
  18. Stepanova N.V. Razumakov A.A. The effect of doping with copper and aluminium on structure, mechanical and friction properties of steel // The 8 International Forum on Strategic Technologies (IFOST 2013): proceedings, Mongolia, Ulaanbaatar, 28 June – 1 July 2013. – Ulaanbaatar, 2013. – Vol. 1. – P. 240–242. – doi: 10.1109/IFOST.2013.6616977.
  19. Яковлев А.Ю. Волчок И.П. Влияние меди на структуру и свойства графитизированной стали // Металловедение и термическая обработка металлов. – 2008. – № 1. – С. 44–46.
  20. Кутателадзе С.С., Боришанский В.М. Справочник по теплопередаче. – М.: Госэнергоиздат, 1958. – 416 с. – ISBN 978-5-458-36211-5.
  21. Особенности упрочнения феррита и перлита в сталях и чугунах, легированных медью / И.А. Батаев, Н.В. Степанова, А.А. Батаев, А.А. Разумаков // Известия высших учебных заведений. Физика. – 2017. – № 6. – С. 86–90.
  22. Особенности выделения наноразмерных частиц ε-фазы меди в ферритных промежутках пластинчатого перлита / И.А. Батаев, Н.В. Степанова, А.А. Батаев, А.А. Никулина, А.А. Разумаков // Физика металлов и металловедение. – 2016. – Т. 117, № 9. – С. 932–937. – doi: 10.7868/S0015323016090011.
  23. Медь в черных металлах / пер. с англ. И.Д. Марчуковой и А.Н. Штейнберга; под ред. О.А. Банных; под ред. И. Ле Мэя и Л.М.Д. Шетки. – М.: Металлургия, 1988. – 312 с. – ISBN 5-229-00073-2.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).