Investigation of the Influence of Energy Parameter of the Covered-Electrode Welding on the Impact Strength Characteristics and Cracking Resistance of the Welded Joints Obtained

Cover Page

Cite item

Full Text

Abstract

Justification: High-strength low-alloy steels are used in mechanical engineering, construction industry, shipbuilding, pipeline transport among others due to increased requirements for the performance characteristics of welded structures. The main method used in the construction of metal structures is arc welding, which has a significant impact on the properties of the weld zone, its structure and mechanical properties. At the same time, there is always a risk of various defects in the weld zone, which physical origin is diverse and difficult to predict. The purpose of the research is to find ways to improve performance of the high-duty structures by estimating the influence of energy parameters of the covered-electrode welding modes and the change of its control algorithms on the weld structure and the heat-affected zone, as well as the characteristics of the impact toughness and crack resistance of the resulting welded joints. Experiment technique: steel 09G2S specimen, obtained by electrode welding in the modes of direct current (DC) and low-frequency current modulation (LFM) are used to carry out tests. Optical microscopy combined with image analyzer is used to study the structure of welds, the heat-affected zone (HAZ) and the base metal (BM). As a part of the study the average grain size is determined. An analysis of fractures of different sections is carried out using scanning electron microscopy. Results: the assessment of the impact of the energy parameters of the covered-electrode welding modes on the characteristics of the impact toughness and crack resistance of welds, as the main indicators of the operational characteristics of the high-duty structures is taken. The dependence of the energy parameters of covered-electrode welding modes and the change of its control algorithms on the structure of the weld and heat affected zone is established. It is shown that the pulsed nature of changes in the energy parameters of the welding mode has a favorable effect on the heat capacity of the melt of the molten pool and the conditions of its crystallization. Testing of HAZ in static fracture toughness showed that all investigated compounds have high values in the whole temperature range: from +20 ? to -60 ?, even in the presence of defects such as fatigue cracks. The effective influence of welding performed in the low-frequency current modulation mode, as compared to DC welding, on the resistance to brittle fracture of welded joints made of low-carbon steels at low climatic temperatures is determined.

About the authors

Y. N. Saraev

Email: litsin@ispms.tsc.ru
D.Sc. (Engineering), Professor, Chief Researcher, Institute of Strength Physics and Materials Science of the Siberian Branch of the RAS, litsin@ispms.tsc.ru

S. V. Gladkovsky

Email: gsv@imach.uran.ru
D.Sc. (Engineering), Associate Professor, Institute of Engineering Science Ural Branch of Russian Academy of Sciences, gsv@imach.uran.ru

S. V. Lepikhin

Email: lsv@imach.uran.ru
Ph.D. (Engineering), Institute of Engineering Science Ural Branch of Russian Academy of Sciences, lsv@imach.uran.ru

I. S. Kamantsev

Email: ks@imach.uran.ru
Institute of Engineering Science Ural Branch of Russian Academy of Sciences, ks@imach.uran.ru

A. G. Lunev

Email: agl@ispms.ru
Ph.D. (Engineering), Institute of Strength Physics and Materials Science of the Siberian Branch of the RAS, agl@ispms.ru

M. V. Perovskaya

Email: mv_perovskaya@inbox.ru
Ph.D. (Engineering), Institute of Strength Physics and Materials Science of the Siberian Branch of the RAS, mv_perovskaya@inbox.ru

References

  1. Физико-технические проблемы современного материаловедения. В 2 т. Т. 1 / редкол.: И.К. Походня и др.; НАН Украины. – Киев: Академпериодика, 2013. – 583 с. – ISBN 978-966-360-236-3.
  2. Liu C., Bhole S.D. Challenges and developments in pipeline weldability and mechanical properties // Science and Technology of Welding and Joining. – 2013. – Vol. 18, iss. 2. – P. 169–181. – doi: 10.1179/1362171812Y.0000000090.
  3. Shiga C. Problems in welded joints and systematic approach to their s solution in STX21 project // Science and Technology of Welding and Joining. – 2000. – Vol. 5, iss. 6. – P. 356–364.
  4. Development of new Low Transformation-Temperature welding consumable to prevent cold cracking in high strength steel welds / S. Zenitani, N. Hayakawa, J. Yamamoto, K. Hiraoka, Y. Morikage, T. Kubo, K. Yasuda, T. Amano // Proceedings of 2002 Symposium for Welded Structures of the Japan Welding Society. – Osaka, 2002. – P. 346–353.
  5. Ogino Y., Hirata Y. Numerical simulation of metal transfer in argon gas-shielded GMAW // Welding in the World. – 2015. – Vol. 59, iss. 4. – P. 465–473. – doi: 10.1007/s40194-015-0221-8.
  6. Kannengiesser Th., Lausch Th., Kromm A. Effects of heat control on the stress build-up during high-strength steel welding under defined restraint conditions // Welding in the World. – 2011. – Vol. 55, iss. 7. – P. 58–65.
  7. Поисковые исследования повышения надежности металлоконструкций ответственного назначения, работающих в условиях экстремальных нагрузок и низких климатических температур / Ю.Н. Сараев, С.В. Гладковский, Н.И. Голиков и др. // Наукоемкие технологии в проектах РНФ. Сибирь / под ред. С.Г. Псахье и Ю.П. Шаркеева. – Томск: Издательство НТЛ, 2017. – Гл. 5. – С. 134–202. – ISBN 978-5-89503-607-5.
  8. Лоос А.В., Лукутин А.В., Сараев Ю.Н. Источники питания для импульсных электротехнологических процессов. – Томск: Изд-во ТПУ, 1998. – 159 с.
  9. Saraev Yu.N., Bezborodov V.P., Selivanov Yu.V. Special features of the formation of protective corrosion-resisting coatings in pulsed electric arc surfacing of austenitic steels // Welding International. – 2010. – Vol. 24, iss. 11. – P. 884–888. – doi: 10.1080/09507116.2010.486199.
  10. Исследование влияния энергетических параметров режима дуговой сварки покрытыми электродами на стабильность тепломассопереноса / Ю.Н. Сараев, А.Г. Лунев, А.С. Киселев, А.С. Гордынец, Д.А. Нестерук, А.А. Хайдарова, Д.А. Чинахов, В.М. Семенчук // Сварочное производство. – 2018. – № 2. – С. 3–13.
  11. Investigation of stability of melting and electrode metal transfer in consumable electrode arc welding using power sources with different dynamic characteristics / Y.N. Saraev, D.A. Chinakhov, D.I. Ilyshenko, A.S. Kiselev, A.S. Gordynets // Welding International. – 2017. – Vol. 31, iss. 10. – P. 784–790. – doi: 10.1080/09507116.2017.1343977.
  12. Hibrid 2D–3D modelling of GTA welding with filler wire addition / A. Traidia, F. Roger, E. Guyot, J. Schroeder, G. Lubineau // International Journal of Heat and Mass Transfer. – 2012. – Vol. 55. – P. 3946–3963. – doi: 10.1016/j.ijheatmasstransfer.2012.03.025.
  13. Wang H., Colegrove P.A., Mehnen J. Hybrid modelling of the contact gap conductance heat transfer in welding process // Advances in Engineering Software. – 2014. – Vol. 68. – P. 19–24. – doi: 10.1016/j.advengsoft.2013.11.000.
  14. Impacts of torch moving on phase change and fluid flow in weld pool of SMAW / L.G. Tong, J.C. Gu, S.W. Yin, L. Wang, S.W. Bai // International Journal of Heat and Mass Transfer. – 2016. – Vol. 100. – P. 949–957.
  15. Походня И.К., Суптель А.М. Теплосодержание капель при сварке в углекислом газе // Автоматическая сварка. – 1970. – № 7. – С. 12–17.
  16. Улучшение структуры и свойств сварных соединений труб большого диаметра из низколегированной стали при импульсно-дуговой сварке / Ю.Н. Сараев, В.П. Безбородов, И.М. Полетика, А.В. Тютев, И.В. Никонова, Н.В. Кирилова, С.П. Севастьянов // Автоматическая сварка. – 2004. – № 12. – С. 34–38.
  17. Сараев Ю.Н. Обоснование концепции повышения безопасности и живучести технических систем, эксплуатируемых в регионах Сибири и Крайнего Севера, на основе применения адаптивных импульсных технологий сварки // Тяжелое машиностроение. – 2010. – № 8. – С. 14–19.
  18. Ланкин Ю.Н. Показатели стабильности процесса дуговой сварки плавящимся электродом // Автоматическая сварка. – 2011. – № 1. – С. 7–15.
  19. Кархин В.А. Тепловые процессы при сварке. – 2-е изд., перераб. и доп. – СПб.: Изд-во Политехн. ун-та, 2015. – 572 с. – ISBN 978-5-7422-4629-9.
  20. Рыкалин Н.Н. Расчеты тепловых процессов при сварке. – М.: Машгиз, 1951. – 296 с.
  21. Совершенствование технологии производства электродов УОНИ-13/55 / И.Н. Ворновицкий, С.А. Горбатов, Ю.А. Глушков, Р.Б. Ктиторов // Сварочное производство. – 2001. – № 1. – С. 42–44.
  22. Броек Д. Основы механики разрушения: пер. с англ. – М.: Высшая школа, 1980. – 368 с.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).