Development of Mathematical Models for Technological Preparation of Production and Adaptive Control for Turning and Milling in Digital Production Systems

Cover Page

Cite item

Full Text

Abstract

Introduction. The development of science-intensive solutions for technological providing of stabile output of machined surface quality and working performance of cutting instrument is up-to-date direction of technological process of machining efficiency increase. This problem poses special value for production systems, which use automated equipment; in particular, for digital production systems (DPS), i.e. it is connected with the implementation of “industrie 4.0” concept in industry. Instability of cutting process appears in fluctuation of thermo-load characteristics of chip-forming processes and contact interaction and promotes instability of quality of machined surface and working performance of cutting instrument. Adaptive control allows to ensure output parameters of cutting process stability while the fluctuation of condition of technological system. On the basis of modern CNC equipment abilities the adaptive control of cutting modes suggested in aim to increase the efficiency of technological process of machining. The purpose of the work is the development and justification of mathematical models linking the influence of modes and parameters of machining with the functional and output parameters of turning and milling to be used in technological preparation of production (TPP) and adaptive control of cutting process in DPS. The research methods are: planning of multilevel full-factor experiments due to the analysis of most widely used construction and tool materials, modes and conditions of machining in turning and milling on CNC machine tools, statistic treatment of experiments results and regression analysis, analysis of obtained mathematical models from the points of theory and physical principles of cutting process. The results and discussion. Based on the carried out experimental investigations, development of mathematical models and analysis of obtained results the calculation formulas for definition of arithmetic mean value Ra and mean roughness spacing Sm of machined surface, feed and cutting force in turning and milling are obtained. Listed mathematical models describe patterns of formation of functional and output parameters of machining by cutting and intended for TPP and for adaptive control of modern automated CNC equipment in DPS for machining. Analysis of developed mathematical models found out patterns of formation of machined surface texture and of cutting forces, i.e. tool load, from points of theory of cutting process and temperature-deformational patterns of high-speed plastic deformation.

About the authors

I. R. Alexander

Email: aleing@yandex.ru
Ph.D. (Engineering), JSC «Federal Scientific and Production Center «Titan-Barricady», Lenin av., w/n, Volgograd, 400071, Russian Federation, aleing@yandex.ru

References

  1. Chang P. Targeting "Industrie 4.0" // The Challenger. – 2017. – Vol. 9, iss. 33. – P. 2–3.
  2. Ingemansson A.R. The development of informational-executive cyber-physical systems in materials production and metalworking // Innovative Technologies in Engineering: From Design to Competitive Product. – 2019. – Vol. 973. – P. 200–205. – doi: 10.1007/978-3-0357-3267-2.
  3. Ingemansson A.R. Characteristics, composition, mechanism function and modern aspects of implementation of digital production systems in mechanical engineering industry // Proceedings of the 5th International Conference on Industrial Engineering (ICIE 2019). – Cham: Springer, 2020. – Vol. 2. – P. 1167–1174. – doi: 10.1007/978-3-030-22063-1.
  4. Старков В.К. Физика и оптимизация резания материалов. – М.: Машиностроение, 2009. – 640 с. – ISBN 978-5-94275-460-0.
  5. Повышение эффективности процессов механообработки на основе подходов искусственного интеллекта и нелинейной динамики / Ю.Г. Кабалдин, О.В. Кретинин, Д.А. Шатагин, А.М. Кузьмишина. – М.: Инновационное машиностроение, 2018. – 184 с. – ISBN 978-5-6040281-1-7.
  6. Condition monitoring of CNC machining using adaptive control / B.S. Prasad, D.S. Prasad, A. Sandeep, G. Veeraiah // International Journal of Automation and Computing. – 2013. – Vol. 10. – P. 202–209. – doi: 10.1007/s11633-013-0713-1.
  7. Adaptive controller design for feedrate maximization of machining process / F. Cus, U. Zuperl, E. Kiker, M. Milfelner // Journal of Achievements in Materials and Manufacturing Engineering. – 2006. – Vol. 17, iss. 1–2. – P. 237–240.
  8. Zuperl U., Cus F., Milfelner M. Fuzzy control strategy for an adaptive force control in end-milling // Journal of Materials Processing Technology. – 2005. – Vol. 164–165. – P. 1472–1478. – doi: 10.1016/j.jmatprotec.2005.02/143.
  9. Chang P. AI case study // Breakthrough. – 2018. – Vol. 10, iss. 38. – P. 12–15.
  10. Справочник технолога / под общ. ред. А.Г. Суслова. – М.: Инновационное машиностроение, 2019. – 800 с. – ISBN 978-5-907104-23-5.
  11. Справочник технолога-машиностроителя. В 2 т. Т. 2 / под ред. А.М. Дальского [и др.]. – 5-е изд., перераб. и доп. – М.: Машиностроение-1, 2001. – 942 с. – ISBN 5-94275-013-0.
  12. Суслов А.Г., Дальский А.М. Научные основы технологии машиностроения. – М.: Машиностроение, 2002. – 684 с. – ISBN 5-217-03108-5.
  13. Режимы резания труднообрабатываемых материалов: справочник / Я.Л. Гуревич, М.В. Горохов, В.И. Захаров, Н.Л. Земина, О.А. Пленина, Ю.Я. Прохоров, А.Н. Соломахин. – 2-е изд., перераб. и доп. – М.: Машиностроение, 1986. – 240 с.
  14. Korloy. Metal cutting tools: catalogue. – South Korea: Korloy Publ., 2017. – 1060 p.
  15. Big Daishowa. High precision toolholders: catalogue. – Japan: Big Daishowa Seiki Ltd., 2016. – 324 p.
  16. Sandvik Coromant machining work manual: guide. – Sweden: Elanders Publ., 2010. – 803 p.
  17. Ингеманссон А.Р., Бондарев А.А. Определение теплопроводности твердосплавного режущего инструмента с многослойными износостойкими покрытиями // Обработка металлов (технология, оборудование, инструменты). – 2019. – Т. 21, № 3. – С. 97–105. – doi: 10.17212/1994-6309-2019-21.3-97-105.
  18. Талантов Н.В. Физические основы процесса резания, изнашивания и разрушения инструмента. – М.: Машиностроение, 1992. – 240 с. – ISBN 5-217-01857-7.
  19. Kalpakjian S., Schmid S.R. Manufacturing engineering and technology. – New York: Prentice Hall, 2010. – 1180 p. – ISBN 9810681445.
  20. Макаров А.Д. Оптимизация процессов резания. – М.: Машиностроение, 1976. – 278 с.
  21. Липатов А.А. Закономерности процесса резания высоколегированных сталей и пути повышения работоспособности твердосплавного инструмента: дис. … канд. техн. наук: 05.03.01. – Волгоград, 1987. – 256 с.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).