Low energy mechanical treatment of non-stoichiometric titanium carbide powder

Cover Page

Cite item

Abstract

Introduction. The practical significance of non-stoichiometric titanium carbides TiCх in various fields of technology and in medicine is expanding. In this regard, it is important to investigate both methods of obtaining titanium carbide powder and its properties in a wide range of stoichiometry. One of the effective ways to influence the physical and mechanical properties of powder systems is its mechanical treatment. Under shock-shear action, which is realized during processing in a ball mill, mechanical energy is transferred to the powder system, as a result of which it is ground, centers with increased activity on newly formed surfaces are formed; phase transformations, crystal lattice deformation, amorphization, formation of defects, etc. are possible. The aim of this work is to study the effect of low-energy mechanical treatment in a ball mill on the structure, phase composition and parameters of the fine crystal structure of non-stoichiometric titanium carbide powder obtained by reduction of titanium oxide with carbon and calcium. Materials and methods. Powder of titanium carbide TiC, obtained by calcium carbonization of titanium oxide was investigated. The powder was treated in a drum type ball mill. The structure of the powders before and after treatment was studied using the Philips SEM 515 scanning electron microscope. The specific surface area was determined by the BET method. The phase composition and parameters of the fine crystal structure of powder materials were investigated by X-ray analyzes. Results and discussion. It was established that an increase of the time of mechanical treatment in a ball mill of a non-stoichiometric titanium carbide powder TiC0.7 leads to an increase in the specific surface area of the powder from 0.6 to 3.4 m2 / g, and the average particle size calculated from it decreases from 2 μm to 360 nm. It is shown that in the process of treatment of the non-stoichiometric titanium carbide TiC0.7 powder, its structural phase state changes. Powder particles consist of two structural components with different atomic ratio of carbon to titanium: TiC0.65 and TiC0.48. Mechanical treatment of titanium carbide powder leads to a decrease in the microstresses of the TiCx crystal lattice and the size of coherently diffracting domains (CDD) from 55 to 30 nm for the TiC0.48 phase. For the TiC0.65 phase, with an increase in the duration of mechanical treatment, as well as for TiC0.48, the size of CDD decreases, and the level of microdistortions of the crystal lattice increases. This indicates that in the process of mechanical treatment, not only the grinding of powder particles occurs, but also an increase in its defects.

About the authors

T. Yu. Sablina

Email: sabtat@ispms.tsc.ru
D.Sc. (Engineering), Institute of Strength Physics and Materials Science of Siberian Branch Russian Academy of Sciences (ISPMS SB RAS), sabtat@ispms.tsc.ru

I. N. Sevostyanova

Email: sevir@ispms.tsc.ru
D.Sc. (Engineering), 1. Institute of Strength Physics and Materials Science of Siberian Branch of Russian Academy of Sciences, 2/4 pr. Akademicheskii, Tomsk, 634055, Russian Federation; 2. National Research Tomsk State University, 36 Lenin Avenue, Tomsk, 634050, Russian Federation, sevir@ispms.tsc.ru

References

  1. Ortner H.M., Ettmayer P., Kolaska H. The history of the technological progress of hardmetals // International Journal of Refractory Metals and Hard Materials. – 2014. – Vol. 44. – P. 148–159. – doi: 10.1016/j.ijrmhm.2013.07.014.
  2. Li Y.-L., Takamasa I. Incongruent vaporization of titanium carbide in thermal plasma // Materials Science and Engineering: A. – 2003. – Vol. 345, iss. 1–2. – P. 301–308. – doi: 10.1016/S0921-5093(02)00506-3.
  3. Lee D.W., Alexandrovskii S.V., Kim B.K. Novel synthesis of substoichiometric ultrafine titanium carbide // Materials Letters. – 2004. – Vol. 58, iss. 9. – P. 1471–1474. – doi: 10.1016/j.matlet.2003.10.011.
  4. Synthesis of titanium carbide from a composite of TiO2, nanoparticles/methyl cellulose by carbothermal reduction / Y. Gotoh, K. Fujimura, M. Koike, Y. Ohkoshi, M. Nagura, K. Akamatsu, S. Deki // Materials Research Bulletin. – 2001. – Vol. 36, iss. 13–14. – P. 2263–2275. – doi: 10.1016/S0025-5408(01)00713-9.
  5. Formation of TiN, TiC and TiCN by metal plasma immersion ion implantation and deposition / P. Huber, D. Manova, S. Mandl, B. Rauschenbach // Surface and Coatings Technology. – 2003. – Vol. 174–175. – P. 1243–1247. – doi: 10.1016/S0257-8972(03)00458-4.
  6. Lengauer W. Transition metal carbides, nitrides, and carbonitrides // Handbook of ceramic hard materials / ed. by R. Riedel. – Weinheim: Wiley-VCH Verlag GmbH, 2000. – Ch. 7. – P. 238–241. – DOI: 10.1002 / 9783527618217.ch7.
  7. Protein adsorption and platelet attachment and activation, on TiN, TiC, and DLC coatings on titanium for cardiovascular applications / M.I. Jones, I.R. McColl, D.M. Grant, K.G. Parker, T.L. Parker // Journal of Biomedical Materials Research. – 2000. – Vol. 52, iss. 2. – P. 413–421. – doi: 10.1002/1097-4636(200011)52:23.0.CO;2-U.
  8. Экспериментальная оценка биосовместимости нового СВС-материала на основе карбида титана со сквозной пористостью на культурах мезенхимальных стволовых клеток костного мозга человека / И.М. Байриков, А.П. Амосов, О.В. Тюмина и др. // Вопросы челюстнолицевой, пластической хирургии, имплантологии и клинической стоматологии. – 2011. – № 1–2. – C. 23–27.
  9. Application of the powder of porous titanium carbide ceramics to a reusable adsorbent for environmental pollutants / H. Moriwaki, S. Kitajima, K. Shirai, K. Kiguchi, O. Yamada // Journal of Hazardous Materials. – 2011. – Vol. 185, iss. 2–3. – P. 725–731. – doi: 10.1016/j.jhazmat.2010.09.079.
  10. Carbide-derived carbons: effect of pore size on hydrogen uptake and heat of adsorption / G. Youshin, R. Dash, J. Jagiello, J.E. Fisher, Y. Gogotsi // Advanced Functional Materials. – 2006. – Vol. 16. – P. 2288–2293. – doi: 10.1002/adfm.200500830.
  11. Role of mechanical activation in SHS synthesis of TiC / F. Magnalia, U. Anselmi-Tamburini, C. Deidda, F. Delogu, G. Cocco, Z.A. Munir // Journal of Materials Science. – 2004. – Vol. 39. – P. 5227–5230. – doi: 10.1023/B:JMSC.0000039215.28545.2f.
  12. Crystal growth of TiC grains during SHS reactions / B. Cochepina, V. Gauthiera, D. Vrelb, S. Dubois // Journal of Crystal Growth. – 2007. – Vol. 304. – P. 481–486. – doi: 10.1016/j.jcrysgro.2007.02.018.
  13. Tong L., Reddy R.G. Synthesis of titanium carbide nano-powders by thermal plasma // Scripta Materialia. – 2005. – Vol. 52, iss. 12. – P. 1253–1258. – doi: 10.1016/j.scriptamat.2005.02.033.
  14. Dewan M.A.R., Zhang G., Ostrovski O. Carbothermal reduction of titania in different gas atmospheres // Metallurgical and Materials Transactions: B. – 2009. – Vol. 40. – P. 62–69. – doi: 10.1007/s11663-008-9205-z.
  15. Woo Y., Kang H., Kim D.J. Formation of TiC particle during carbothermal reduction of TiO2 // Journal of the European Ceramic Society. – 2007. – Vol. 27, iss. 2–3. – P. 719–722. – doi: 10.1016/j.jeurceramsoc.2006.04.090.
  16. Grove D.E., Gupta U., Castleman A.W. Effect of carbon concentration on changing the morphology of titanium carbide nanoparticles from cubic to cubooctahedron // ACS Nano. – 2010. – Vol. 4. – P. 49–54. – DOI: 10.1021 / nn901041.
  17. Preiss H., Berger L.M., Schultze D. Studies on the carbothermal preparation of titanium carbide from different gel precursors // Journal of the European Ceramic Society. – 1999. – Vol. 19, iss. 2. – P. 195–206. – doi: 10.1016/S0955-2219(98)00190-3.
  18. Preparation of titanium carbide powders by sol–gel and microwave carbothermal reduction methods at low temperature / H. Zhang, F. Li, Q. Jia, G. Ye // Journal of Sol-Gel Science and Technology. – 2008. – Vol. 46. – P. 217–222. – doi: 10.1007/s10971-008-1697-0.
  19. A simple method of synthesis and surface purification of titanium carbide powder / S. Dyjak, M. Norek, M. Polanski, S. Cudzilo, J. Bystrzycki // International Journal of Refractory Metals and Hard Materials. – 2013. – Vol. 38. – P. 87–91. – doi: 10.1016/j.ijrmhm.2013.01.004.
  20. Fu Z., Koc R. Pressureless sintering of submicron titanium carbide powders // Ceramics International. – 2017. – Vol. 43, iss. 18. – P. 17233–17237. – doi: 10.1016/j.ceramint.2017.09.050.
  21. Tong L., Reddy R.G. Synthesis of titanium carbide nano-powders by thermal plasma // Scripta Materialia. – 2005. – Vol. 52, iss. 12. – P. 1253–1258. – doi: 10.1016/j.scriptamat.2005.02.033.
  22. Preparation of titanium carbide powders by carbothermal reduction of titania/charcoal at vacuum condition / W. Sen, H. Sun, B. Yang, B. Xu, W. Ma, D. Liu, Y. Dai // International Journal of Refractory Metals and Hard Materials. – 2010. – Vol. 28, iss. 5. – P. 628–632. – doi: 10.1016/j.ijrmhm.2010.06.005.
  23. Фазовые превращения беспорядок-порядок и электросопротивление нестехиометрического карбида титана / В.Н. Липатников, А. Коттар, Л.В. Зуева, А.И. Гусев // Физика твердого тела. – 1998. – T. 40, № 7. – C. 1332–1340.
  24. Кипарисов С.С., Левинский Ю.В., Петров А.П. Карбид титана: получение, свойства, применение. – М.: Металлургия, 1987. – 215 с.
  25. Kurlov A.S., Gusev A.I. High-energy milling of nonstoichiometric carbides: effect of nonstoichiometry on particle size of nanopowders // Journal of Alloys and Compounds. – 2014. – Vol. 582. – P. 108–118. – doi: 10.1016/j.jallcom.2013.08.008.
  26. Горбачева Т.Б. Рентгенография твердых сплавов. – М.: Металлургия, 1985. – 205 с.
  27. Effect of mechanical treatment on properties of Si-Al-O zeolites / A.Y. Buzimov, W. Eckl, L.A. Gömze, I. Kocserha, E. Kurovics, A.S. Kulkov, S.N. Kulkov // Építoanyag – Journal of Silicate Based and Composite Materials. – 2018. – Vol. 70, iss. 1. – P. 23–26. – doi: 10.14382/epitoanyag-jsbcm.2018.5.
  28. Peculiarities of the formation of high-defect states in mechanocomposites and powders of niobium and aluminum under severe deformation in planetary ball mills / I.A. Ditenberg, A.N. Tyumentsev, K.I. Denisov, M.A. Korchagin // Physical Mesomechanics. – 2013. – Vol. 16. – P. 84–92. – doi: 10.1134/S1029959913010098.
  29. Абдульменова Е.В., Кульков С.Н.. Влияние механической активации порошка ВК-8 на свойства спеченных твердых сплавов // Обработка металлов (технология, оборудование, инструменты). – 2021. – Т. 23, № 1. – С. 68–78. – doi: 10.17212/1994-6309-2021-23.1-68-78.
  30. Boldyrev V.V. Mechanochemistry and mechanical activation of solids // Russian Chemical Reviews. – 2006. – Vol. 75, iss. 3. – P. 177–189. – doi: 10.1070/RC2006v075n03ABEH001205.
  31. Urakaev F.K., Boldyrev V.V. Mechanism and kinetics of mechanochemical processes in comminuting devices // Powder Technology. – 2000. – Vol. 107, iss. 1–2. – P. 93–107. – doi: 10.1016/s0032-5910(99)00175-8.
  32. Scherrer P. Bestimmung der inneren Struktur und der Größe von Kolloidteilchen mittels Röntgenstrahlen // Kolloidchemie Ein Lehrbuch. – Berlin; Heidelberg: Springer, 1912. – P. 387–409. – doi: 10.1007/978-3-662-33915-2_7.
  33. Stokes A.R., Wilson A.J.C. The diffraction of X-rays by distorted crystal aggregates // Proceedings of the Physical Society. – 1944. – Vol. 56 (3). – P. 174–181. – doi: 10.1088/0959-5309/56/3/303.
  34. Салтыков С.А. Стереометрическая металлография. – М.: Металлургия, 1970. – 376 с.
  35. High-energy ball-milling combined with annealing of TiC powders and its influence on the microstructure and mechanical properties of the TiC-based cermets / H. Xiong, Z. Li, X. Gan, L. Chai, K. Zhou // Materials Science and Engineering: A. – 2017. – Vol. 694. – P. 33–40. – doi: 10.1016/j.msea.2017.03.092.
  36. Xiong H., Li Z., Zhou K. TiC whisker reinforced ultra-fine TiC-based cermets: microstructure and mechanical properties // Ceramics International. – 2016. – Vol. 42, iss. 6. – P. 6858–6867. – doi: 10.1016/j.ceramint.2016.01.069.
  37. Влияние механической обработки на структуру и свойства порошка нестехиометрического карбида титана / М.В. Григорьев, Л.М. Молчунова, С.П. Буякова, С.Н. Кульков // Известия высших учебных заведений. Физика. – 2013. – Т. 56, № 7-2. – С. 206–210.
  38. Ремпель А.А. Эффекты атомно-вакансионного упорядочения в нестехиометрических карбидах // Успехи физических наук. – 1996. – Т. 166, № 1. – С. 32–62.
  39. Гусев А.И. Превращение беспорядок-порядок и фазовые равновесия в сильно нестехиометрических соединениях // Успехи физических наук. – 2000. – Т. 170, № 1. – С. 3–40.
  40. Гусев А.И. Нестехиометрия и сверхструктуры // Успехи физических наук. – 2014. – Т. 184, № 9. – С. 905–945.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).