Invariant stress state parameters for forging upsetting of magnesium in the shell

Cover Page

Cite item

Abstract

Introduction. For pressure treatment of low-plastic metals, it is necessary to develop special techniques for increasing plasticity. In the cold state, an increase in plastic properties is possible due to an increase in the level of compressive stresses during deformation. In the processes of forging precipitation, this is achieved by using shells or clips of various types. At the same time, the configuration of the precipitation tool also matters. To create additional compressive stresses and increase the ductility of the metal, the working surface of the tool can be configured differently than with a normal free draft, where it is obviously larger than the contact surface area of the workpiece, so that metal broadening can occur. The stress state has a great influence on the plasticity of the processed material. This state is described by methods of tensor representation, but to assess the situation, it is customary to use invariants of tensors in one form or another, which eliminates the influence of coordinates on the results of the analysis. In the sections of deformable body mechanics dealing with the influence of the stress state on plasticity, the first, but sometimes other invariants of the stress tensor are used, the invariants themselves are transformed into the stress state indicator and the lode coefficient. The aim of the work: mathematical evaluation of invariant parameters of the stress state of the magnesium precipitation process at room temperature, according to the results of which it is possible to obtain a positive result in real experiments. Research methods: finite element simulation using the DEFORM software module. Results and discussion. The theoretical justification of increasing the plasticity of the magnesium billet in the process of precipitation in the cage without its compression is carried out. An increase in the stress state index modulo 2...5 times is revealed, which contributes to an increase in the plasticity of the metal. At the same time, a zone with a lode coefficient close to zero is identified. It is adjacent to the middle of the height of the workpiece at the point of contact with the cage and can be a dangerous cross-section from the position of crack formation.

About the authors

Y. N. Loginov

Email: j.n.loginov@urfu.ru
Doctor of Technical Sciences, Professor, 1. Ural Federal University named after the fi rst President of Russia B.N. Yeltsin, 19 Mira str., Ekaterinburg, 620002, Russian Federation; 2. M.N. Mikheev Institute of Metal Physics of the Ural Branch of the Russian Academy of Sciences, 18 S. Kovalevskaya str., Ekaterinburg, 620137, Russian Federation, j.n.loginov@urfu.ru

Y. V. Zamaraeva

Email: zamaraevajulia@yandex.ru
1. Ural Federal University named after the fi rst President of Russia B.N. Yeltsin, 19 Mira str., Ekaterinburg, 620002, Russian Federation; 2. M.N. Mikheev Institute of Metal Physics of the Ural Branch of the Russian Academy of Sciences, 18 S. Kovalevskaya str., Ekaterinburg, 620137, Russian Federation, zamaraevajulia@yandex.ru

References

  1. Kudiiarov V.N., Lider А.М., Harchenko S.Y. Hydrogen accumulation in technically pure titanium alloy at saturation from gas atmosphere // Advanced Materials Research. – 2014. – Vol. 880. – P. 68–73. – doi: 10.4028/ href='www.scientific.net/AMR.880.68' target='_blank'>www.scientific.net/AMR.880.68.
  2. Fundamentals and advances in magnesium alloy corrosion / M. Esmaily, J.E. Svensson, S. Fajardo, N. Birbilis, G.S. Frankel, S. Virtanen, R. Arrabal, S. Thomas, L.G. Johansson // Progress in Materials Science. – 2017. – Vol. 89. – P. 92–193. – doi: 10.1016/j.pmatsci.2017.04.011.
  3. Proust G. Processing magnesium at room temperature // Science. – 2019. – Vol. 364 (6448). – P. 30–31. – doi: 10.1126/science.aax9732.
  4. Microstructure and mechanical properties in an AZ31 magnesium alloy sheet fabricated by asymmetric hot extrusion / L.L. Chang, Y.N. Wang, X. Zhao, J.C. Huang // Materials Science and Engineering: A. – 2008. – Vol. 496, iss. 1–2. – P. 512–516. – doi: 10.1016/j.msea.2008.06.015.
  5. Логинов Ю.Н., Каменецкий Б.И., Замараева Ю.В. Межслойное взаимодействие при осадке биметаллической заготовки // Кузнечно-штамповочное производство. Обработка материалов давлением. – 2019. – № 7. – С. 41–45.
  6. An effective approach called the composite extrusion to improve the mechanical properties of AZ31 magnesium alloy sheets / F. Pan, Q. Wang, B. Jiang, J. He, Y. Chai, J. Xu // Materials Science and Engineering: A. – 2016. – Vol. 655. – P. 339–345. – doi: 10.1016/j.msea.2015.12.098.
  7. Khanawapee U., Butdee S. A study of barreling and DEFORM 3D simulation in cold upsetting of bi-material // Materials Today: Proceedings. – 2020. – Vol. 26, pt. 2. – P. 1262–1270. – doi: 10.1016/j.matpr.2020.02.252.
  8. Malcher L., Mamiya E.N. An improved damage evolution law based on continuum damage mechanics and its dependence on both stress triaxiality and the third invariant // International Journal of Plasticity. – 2014. – Vol. 56. – P. 232–261. – doi: 10.1016/j.ijplas.2014.01.002.
  9. Asymmetric yield function based on the stress invariants for pressure sensitive metals / J.W. Yoon, Y. Lou, J. Yoon, M.V. Glazoff // International Journal of Plasticity. – 2014. – Vol. 56. – P. 184–202. – doi: 10.1016/j.ijplas.2013.11.008.
  10. Experiments on stress-triaxiality dependence of material behavior of aluminum alloys / L. Driemeier, G. Micheli, M. Alves, M. Brünig // Mechanics of Materials. – 2010. – Vol. 42, iss. 2. – P. 207–217. – doi: 10.1016/j.mechmat.2009.11.012.
  11. Effect of the lode parameter in predicting shear cracking of 2024-t351 aluminum alloy Taylor rods / X. Xiao, Z. Mu, H. Pan, Y. Lou // International Journal of Impact Engineering. – 2018. – Vol. 120. – P. 185–201. – doi: 10.1016/j.ijimpeng.2018.06.008.
  12. Mirone G., Corallo D. A local viewpoint for evaluating the influence of stress triaxiality and lode angle on ductile failure and hardening // International Journal of Plasticity. – 2010. – Vol. 26, iss. 3. – P. 348–371. – doi: 10.1016/j.ijplas.2009.07.006.
  13. Каменецкий Б.И., Логинов Ю.Н., Волков А.Ю. Методы и устройства для повышения пластичности хрупких материалов при холодной осадке с боковым подпором // Заготовительные производства в машиностроении. – 2013. – № 9. – С. 15–22.
  14. Получение, структура, текстура и механические свойства сильно деформированных образцов магния / А.Ю. Волков, О.В. Антонова, Б.И. Каменецкий, И.В. Клюкин, Д.А. Комкова, Б.Д. Антонов // Физика металлов и металловедение. – 2016. – Т. 117, № 5. – С. 538–548. – doi: 10.1134/S0031918X16050161.
  15. Каменецкий Б.И., Логинов Ю.Н., Кругликов Н.А. Влияние условий бокового подпора на пластичность магния при холодной осадке // Технология легких сплавов. – 2012. – № 1. – С. 86–92.
  16. Design Environment for forming: website. – 2021. – URL: http://www.DEFORM.com (accessed: 08.02.2021).
  17. Колмогоров В.Л. Механика обработки металлов давлением. – Екатеринбург: Изд-во Урал. гос. техн. ун-та, 2001. – 834 с.
  18. Логинов Ю.Н., Замараева Ю.В., Каменецкий Б.И. Осадка цилиндрической магниевой заготовки в медной оболочке без ее обжатия // Цветные металлы. – 2020. – № 4. – С. 77–82. – doi: 10.17580/tsm.2020.04.09.
  19. Комкова Д.А., Волков А.Ю. Структура и текстура магния после низкотемпературной мегапластической деформации // Вектор науки Тольяттинского государственного университета. – 2017. – № 3 (41). – С. 70–75.
  20. Narayanasamy R., Pandey K.S. Phenomenon of barrelling in aluminium solid cylinders during cold upset-forming // Journal of Materials Processing Technology. – 1997. – Vol. 70, iss. 1–3. – P. 17–21. – doi: 10.1016/S0924-0136(97)00035-6.
  21. Ganjiani M. A damage model for predicting ductile fracture with considering the dependency on stress triaxiality and Lode angle // European Journal of Mechanics – A/Solids. – 2020. – Vol. 84. – P. 104048. – doi: 10.1016/j.euromechsol.2020.104048.
  22. Смирнов С.В., Вичужанин Д.И., Нестеренко А.В. Комплекс испытаний для исследования влияния напряженного состояния на предельную пластичность металла при повышенной температуре // Вестник ПНИПУ. Механика. – 2015. – № 3. – С. 146–164. – doi: 10.15593/perm.mech/2015.3.11.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».