Synthesis of a three-component aluminum-based alloy by selective laser melting

Abstract

Introduction. The technology of selective laser melting is one of the key technologies in Industry 4.0, which allows manufacturing products of any complex geometric shape, reducing significantly the amount of material used, reducing the lead time and obtaining a new alloy from elementary powders in the melting process. To understand the process of alloy formation under laser exposure, it is necessary to know the initial data of powders, which significantly affect the quality of the products obtained. The purpose of this study is to determine the requirements for the structural-phase state, elemental composition of aluminum, silicon and magnesium powders and further preparation of Al-Si-Mg (Al — 91 wt.%, Si — 8 wt.%, Mg — 1 wt.%) powder mixture for laser synthesis. The initial powders of aluminum PA-4 (GOST 6058-73), silicon (GOST 2169-69) and magnesium MPF-4 (GOST 6001-79) and powder composition Al-Si-Mg are studied using X-ray diffraction and X-ray phase analysis. The shape and sizes of particles are determined by the studies of raster electronic images. By the method of selective laser melting, samples are obtained from a powder composition under constant and pulsed laser exposure. The composition is prepared by mixing powders in a globe mill. Results and discussion. It is shown that the initial powders of aluminum, silicon and magnesium are single-phase. Particles with a size of 20–64 µm, recommended for selective laser melting, are used to obtain a powder composition. By mixing the powders for one hour, spherical particles are obtained, which is preferable for laser melting. The results of grinding the samples after laser melting showed that the samples obtained under constant laser exposure at the following mode parameters: P = 80 W, V = 300 mm/s, s = 90 μm, h = 25 μm have the greatest mechanical strength. Conclusions. The described study shows the possibility of synthesizing products from a powder composition of aluminum, silicon and magnesium by selective laser melting.

About the authors

N. A. Saprykina

Email: saprikina@tpu.ru
Ph.D. (Engineering), Associate Professor, National Research Tomsk Polytechnic University, 30 Lenin Avenue, Tomsk, 634050, Russian Federation, saprikina@tpu.ru

V. V. Chebodaeva

Email: vtina5@mail.ru
Ph.D. (Engineering), Institute of Strength Physics and Materials Science of Siberian Branch of Russian Academy of Sciences, vtina5@mail.ru

A. A. Saprykin

Email: sapraa@tpu.ru
Ph.D. (Engineering), National Research Tomsk Polytechnic University, 30 Lenin Avenue, Tomsk, 634050, Russian Federation, sapraa@tpu.ru

Y. P. Sharkeev

Email: sharkeev@ispms.tsc.ru
D.Sc. (Physics and Mathematics), Professor, ISPMS SB RAS, sharkeev@ispms.tsc.ru

E. A. Ibragimov

Email: egor83rus@tpu.ru
National Research Tomsk Polytechnic University, 30 Lenin Avenue, Tomsk, 634050, Russian Federation, egor83rus@tpu.ru

T. S. Guseva

Email: tsh2@tpu.ru
National Research Tomsk Polytechnic University, 30 Lenin Avenue, Tomsk, 634050, Russian Federation, tsh2@tpu.ru

References

  1. Khajavi S.H., Partanen J., Hölmstrom J. Additive manufacturing in the spare parts supply chain // Computers in Industry. – 2014. – Vol. 65. – P. 50–63.
  2. Post heat treatment of additive manufactured AlSi10Mg: on silicon morphology, texture and small-scale properties / F. Alghamdi, X. Song, A. Hadadzadeh, B. Shalchi-Amirkhiz, M. Mohammadi, M. Haghshenas // Materials Science and Engineering A. – 2020. – Vol. 783. – P. 139296.
  3. Yadollahi A., Shamsaei N. Additive manufacturing of fatigue resistant materials: challenges and opportunities // International Journal of Fatigue. – 2017. – Vol. 98. – P. 14–31.
  4. Advances in laser additive manufacturing of Ti-Nb alloys: from nanostructured powders to bulk objects / M.A. Khimich, K.A. Prosolov, T. Mishurova, S. Evsevleev, X. Monforte, A.H. Teuschl, P. Slezak, E.A. Ibragimov, A.A. Saprykin, Z.G. Kovalevskaya, A.I. Dmitriev, G. Bruno, Y.P. Sharkeev // Nanomaterials. – 2021. – Vol. 11 (5). – P. 1159.
  5. Additive manufacturing of metallic components – process, structure and properties / T. Debroy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A. Wilson-Heid, A. De, W. Zhang // Progress in Materials Science. – 2018. – Vol. 92. – P. 112–224.
  6. D printing of aluminum alloys: additive manufacturing of aluminum alloys using selective laser melting / N.T. Aboulkhair, M. Simonelli, L. Parry, I. Ashcroft, C. Tuck, R. Hague // Progress in Materials Science. – 2019. – Vol. 106. – P. 100578.
  7. Fatigue of AlSi10Mg specimens fabricated by additive manufacturing selective laser melting (AM-SLM) / N.E. Uzan, R. Shneck, O. Yeheskel, N. Frage // Materials Science and Engineering A. – 2017. – Vol. 704. – P. 229–237.
  8. Reducing porosity in AlSi10Mg parts processed by selective laser melting / N.T. Aboulkhair, N.M. Everitt, I. Ashcroft, C. Tuck // Additive Manufacturing. – 2014. – Vol. 1–4. – P. 77–86.
  9. Mechanical behavior and strengthening mechanisms in ultrafine grain precipitation-strengthened aluminum alloy / K. Ma, H. Wen, T. Hu, T.D. Topping, D. Isheim, D.N. Seidman, E.J. Lavernia, J.M. Schoenung // Acta Materialia. – 2014. – Vol. 62. – P. 141–155.
  10. Laser powder bed fusion additive manufacturing of metals; physics, computational, and materials challenges / W.E. King, A.T. Anderson, R.M. Ferencz, N.E. Hodge, C. Kamath, S.A. Khairallah // Applied Physics Reviews. – 2015. – Vol. 2 (4). – P. 41304. – doi: 10.1063/1.4937809.
  11. Saprykina N.A., Saprykin A.A., Arkhipova D.A. Influence of shielding gas and mechanical activation of metal powders on the quality of surface sintered layers // IOP Conference Series: Materials Science and Engineering. – 2016. – Vol. 125 (1). – P. 012016.
  12. Comparison of microstructure and mechanical properties of Scalmalloy® produced by selective laser melting and laser metal deposition / M. Awd, J. Tenkamp, M. Hirtler, S. Siddique, M. Bambach, F. Walther // Materials. – 2017. – Vol. 11. – P. 1–17.
  13. High power selective laser melting (HPSLM) of aluminum parts / D. Buchbinder, H. Schleifenbaum, S. Heidrich, W. Meiners, J. Bültmann // Physics Procedia. – 2011. – Vol. 12. – P. 271–278.
  14. Effect of laser rescanning on the grain microstructure of a selective laser melted Al-Mg-Zr alloy / S. Griffiths, M.D. Rossell, J. Croteau, N.Q. Vo, D.C. Dunand, C. Leinenbach // Materials Characterization. – 2018. – Vol. 143. – P. 34–42.
  15. Lu Z., Zhang L.J. Thermodynamic description of the quaternary Al-Si-Mg-Sc system and its application to the design of novel Sc-additional A356 alloys // Materials and Design. – 2017. – Vol. 116. – P. 427–437.
  16. Zhang D. Processing of advanced materials using high-energy mechanical milling // Progress in Materials Science. – 2004. – Vol. 49. – P. 537–560.
  17. Gu D., Wang H., Zhang G. Selective laser melting additive manufacturing of Ti-based nanocomposites: the role of nanopowder metal // Metallurgical and Materials Transactions A. – 2014. – Vol. 45. – P. 464–476.
  18. Selective laser melting of the Ti–(40–50) wt.% Nb alloy / Y.P. Sharkeev, A.I. Dmitriev, A.G. Knyazeva, A.Yu. Eroshenko, A.A. Saprykin, M.A. Khimich, E.A. Ibragimov, I.A. Glukhov, A.M. Mairambekova, A.Y. Nikonov // High Temperature Material Processes. – 2017. – Vol. 21 (2). – P. 161–183.
  19. Selective laser melting of magnesium / А.А. Saprykin, Y.P. Sharkeev, N.А. Saprykina, E.A. Ibragimov // Key Engineering Materials. – 2020. – Vol. 839. – P. 144–149.
  20. Laser additive manufacturing of metallic components: materials, processes and mechanisms / D.D. Gu, W. Meiners, K. Wissenbach, R. Poprawe // International Materials Reviews. – 2012. – Vol. 57. – P. 133–164. – doi: 10.1179/1743280411Y.0000000014.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).