Deposition of titanium silicide on stainless steel AISI 304 surface

Cover Page

Cite item

Abstract

Introduction. Metal-ceramic coatings based on titanium silicide are promising for protecting stainless steel AISI 304 from wear, corrosion and high-temperature oxidation. Purpose of the work: to investigate the stainless steel AISI 304 surface layer structure after electrospark deposition in a mixture of titanium granules with silicon powder, and to study oxidation resistance, corrosion resistance and tribotechnical properties of the obtained coatings. Research methodology. Fe-Ti-Si coatings on the stainless steel AISI 304 samples were obtained by electrospark machining with a non-localized electrode consisting of titanium granules and 2.6-6 vol.% mixture of titanium and crystalline silicon powders. Results and discussion: it is shown that a stable positive gain of the cathode is observed when the proportion of silicon in the powder mixture does not exceed 32 vol.%. The phase composition of the coatings includes: a solid solution of chromium in iron, titanium silicide Ti5Si3, titanium and silicon, which is confirmed by the energy dispersion analysis data. The microhardness of Fe-Ti-Si coatings ranges from 10.05 to 12.86 GPa, which is 5-6 times higher than that of uncoated steel AISI 304. The coefficient of friction of the coatings is about 20% lower compared to steel AISI 304 and hovers around 0.71-0.73. Wear tests in dry sliding mode show that Fe-Ti-Si coatings can increase the wear resistance of steel AISI 304 up to 6 times. The oxidation resistance of the coatings at a temperature of 900 ?С is 7-12 times higher as compared to steel AISI 304. The conducted studies have shown that new electrospark Fe-Ti-Si coatings can increase corrosion resistance, oxidation resistance, microhardness, as well as reduce the coefficient of friction and wear rate of the stainless steel AISI 304 surface.

About the authors

A. A. Burkov

Email: burkovalex@mail.ru
Ph.D. (Physics and Mathematics), Institute of Materials Science of the Khabarovsk Scientific Center of the Far-Eastern Branch of the Russian Academy of Sciences, 153 Tikhookeanskaya, Khabarovsk, 680042, Russian Federation, burkovalex@mail.ru

V. O. Krutikova

Email: nm32697@gmail.com
Institute of Tectonics and Geophysics, Far Eastern Branch of the Russian Academy of Sciences, 65 Kim Yu Chen street, Khabarovsk, 680000, Russian Federation, nm32697@gmail.com

References

  1. Рыбалка К.В., Бекетаева Л.А., Давыдов А.Д. Определение скорости коррозии стали AISI 304 в растворах HCl методом измерения омического сопротивления исследуемого образца // Электрохимия. – 2019. – Т. 55, № 9. – С. 1147–1152. – doi: 10.1134/S0424857019080139.
  2. Tribocorrosion behaviour of duplex surface treated AISI 304 stainless steel / A. de Frutos, M.A. Arenas, G.G. Fuentes, R.J. Rodríguez, R. Martínez, J.C. Avelar-Batista, J.J. de Damborenea // Surface and Coatings Technology. – 2010. – Vol. 204, N 9–10. – P. 1623–1630. – doi: 10.1016/j.surfcoat.2009.10.039.
  3. Штефан В.В., Канунникова Н.А. Оксидирование стали AISI 304 в Al-, Ti-содержащих растворах // Физикохимия поверхности и защита материалов. – 2020. – Т. 56, № 2. – 202–207. – doi: 10.31857/S0044185620020230.
  4. The influence of the pre-placed powder layers on the morphology, microscopic characteristics and microhardness of Ti-6Al-4V/WC MMC coatings during laser cladding / C. Qi, X. Zhan, Q. Gao, L. Liu, Y. Song, Y. Li. // Optics and Laser Technology. – 2019. – Vol. 119. – P. 105572. – doi: 10.1016/j.optlastec.2019.105572.
  5. Nurminen J., Näkki J., Vuoristo P. Microstructure and properties of hard and wear resistant MMC coatings deposited by laser cladding // International Journal of Refractory Metals and Hard Materials. – 2009. – Vol. 27. – P. 472–478. – doi: 10.1016/j.ijrmhm.2008.10.008.
  6. In-situ Ti (C, N) reinforced AlCoCrFeNiSi-based high entropy alloy coating with functional gradient double-layer structure fabricated by laser cladding / G. Yan, M. Zheng, Z. Ye, J. Gu, C. Li, C. Wu, B. Wang // Journal of Alloys and Compounds. – 2021. – Vol. 886. – P. 161252. – doi: 10.1016/J.JALLCOM.2021.161252.
  7. Liu X.B., Wang H.M. Microstructure, wear and high-temperature oxidation resistance of laser clad Ti5Si3/γ/TiSi composite coatings on γ-TiAl intermetallic alloy // Surface and Coatings Technology. – 2006. – Vol. 200, N 14–15. – P. 4462–4470. – doi: 10.1016/j.surfcoat.2005.03.006.
  8. Effect of Si content on microstructure and tribological properties of Ti5Si3/TiC reinforced NiTi laser cladding coatings / W. Su, X. Cui, Y. Yang, Y. Guan, Y. Zhao, S. Wan, J. Li, G. Jin // Surface and Coatings Technology. – 2021. – Vol. 418. – P. 127281. – doi: 10.1016/j.surfcoat.2021.127281.
  9. Aluminum diffusion inhibiting properties of Ti5Si3 at 900 °C and its beneficial properties on Al-rich oxidation protective coatings on γ-TiAl / P.-P. Bauer, R. Swadzba, L. Klamann, N. Laska // Corrosion Science. – 2022. – Vol. 201. – P. 110265.
  10. Microstructure and dry sliding wear behavior of plasma transferred arc clad Ti5Si3 reinforced intermetallic composite coatings / Y.F. Liu, Y.L. Zhou, Q. Zhang, F. Pu, R.H. Li, S.Z. Yang // Journal of Alloys and Compounds. – 2014. – Vol. 591. – P. 251–258. – doi: 10.1016/J.JALLCOM.2013.12.225.
  11. Бурков А.А., Кулик М.А., Крутикова В.О. Характеристика Ti–Si-покрытий на сплаве Ti6Al4V, осажденных электроискровой обработкой в среде гранул // Цветные металлы. – 2019. – № 4. – С. 54–59. – doi: 10.17580/tsm.2019.04.07.
  12. Pliszka I., Radek N. Corrosion resistance of WC-Cu coatings produced by electrospark deposition // Procedia Engineering. – 2017. – Vol. 192. – P. 707–712. – doi: 10.1016/j.proeng.2017.06.122.
  13. Палатник Л.С. Фазовые превращения при электроискровой обработке металлов и опыт установления критерия наблюдаемых взаимодействий // Доклады Академии наук СССР. – 1953. – Т. 89, № 3. – С. 455–458.
  14. Бурков А.А. Получение аморфных покрытий электроискровой обработкой стали 35 в смеси железных гранул с CrMoWCBSi порошком // Обработка металлов: технология, оборудование, инструменты. – 2019. – Т. 21, № 4. – С. 19–30. – doi: 10.17212/1994-6309-2019-21.4-19-30.
  15. Бурков А.А., Кулик М.А. Электроискровое осаждение покрытий с использованием порошка Cr3C2 и их характеристика // Письма о материалах. – 2019. – Т. 9, № 2. – С. 243–248. – doi: 10.22226/2410-3535-2019-2-243-248.
  16. Бурков А.А., Кулик М.А. Коррозионная и триботехническая характеристика металломатричных Fe-Ti-Cr-B покрытий // Сварочное производство. – 2021. – № 12. – С. 43–49.
  17. The synthesis of bulk material through explosive compaction for making intermetallic compound Ti5Si3 and its composites / K. Hokamoto, J.S. Lee, M. Fujita, S. Itoh, K. Raghukandan // Journal of Materials Science. – 2002. – Vol. 37, N 19. – P. 4073–4078. – doi: 10.1023/A:1020071416063.
  18. Frommeyer G., Rosenkranz R. Structures and properties of the refractory silicides Ti5Si3 and TiSi2 and Ti-Si-(Al) eutectic alloys // Metallic Materials with High Structural Efficiency. – Dordrecht: Springer, 2004. – P. 287–308. – doi: 10.1007/1-4020-2112-7_30.
  19. Электроискровое легирование титана и его сплавов металлами и композиционными материалами / А.Д. Верхотуров, И.А. Подчерняева, В.М. Панашенко, Л.А. Коневцов. – Комсомольск-на-Амуре: ИмиМ ДВО РАН, 2014. – 320 с.
  20. Oxidation of pentatitanium trisilicide (Ti5Si3) powder at high temperature / J.-I. Matsushita, T. Satsukawa, N. Iwamoto, X. Wang, J. Yang, T. Goto, T. Sekino, X. Wu, S. Yin, T. Sato // Materials Science Forum. – 2016. – Vol. 868. – P. 38–42. – doi: 10.4028/ href='www.scientific.net/MSF.868.38' target='_blank'>www.scientific.net/MSF.868.38.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).