A comparative evaluation of friction and wear in alternative materials for brake friction composites

Cover Page

Cite item

Abstract

Introduction: this study examines research and development efforts aimed at developing non-asbestos brake friction composites (BFCs) to improve the safety and performance of automotive brake systems. The evolution of BFCs from asbestos-based materials to safer alternatives is studied, and an analysis is performed to develop alternative material combinations. The critical roles of key components — fibers, binders, friction modifiers and fillers — in creating durable brake friction composites for brake systems is emphasized. A composite material based on basalt fiber with calcium carbonate filler is compared to a composite material based on aramid fiber with barium sulfate filler through pin-on-disc tribological testing. Based on the test results, it is determined that the alternative composite materials show promise for application in brake systems. This work also provides a foundation for further development of eco-friendly brake friction composites by selecting optimal formulations. The present work defines an approach for subsequent research aimed at varying the components and their ratios in the creation of composite materials. This research will further improve the functionality of automotive brake systems. Purpose of the work: this research is focused on the development of non-asbestos brake friction composites (BFCs) with the goal of improving the safety and performance of automotive brake systems. Eco-friendly alternatives to asbestos are investigated, and the roles of fibers, binders, friction modifiers, and fillers are analyzed. The objective of the research is to identify optimal formulations for creating durable, sustainable brake materials, paving the way for further implementation of innovative solutions in practice. Methods of investigation: a pin-on-disc tribological method is used to evaluate wear, friction, and durability, as well as to assess the suitability of the developed materials for use in brake systems. This research is dedicated to analyzing the influence of components (fibers, binders, friction modifiers, and fillers) on the properties of friction composites for brake systems. Two compositions were experimentally studied: basalt fiber with calcium carbonate and aramid fiber with barium sulfate. Results and discussion: the results of the research demonstrate the effectiveness of using basalt fiber with calcium carbonate and aramid fiber with barium sulfate as components in friction composites for brake systems. It is shown that these materials provide high levels of wear resistance and friction performance. The potential for further optimization of compositions to improve eco-friendliness and enhance the operational properties of braking systems is emphasized. The obtained results also highlight the importance of component selection for the development of safe and sustainable brake friction composites.

About the authors

N. Kate

Email: naren.kate@viit.ac.in
Ph.D. (Engineering), Vishwakarma Institute of Information Technology, Survey No. 3/4, Kondhwa (Budruk), Maharashtra, Pune - 411048, India, naren.kate@viit.ac.in

A. Kulkarni

Email: atul.kulkarni@viit.ac.in
Ph.D. (Engineering), Professor, Vishwakarma Institute of Information Technology, Survey No. 3/4, Kondhwa (Budruk), Maharashtra, Pune - 411048, India, atul.kulkarni@viit.ac.in

Y. Dama

Email: yogirajdama@dbatu.ac.in
Dr. Babasaheb Ambedkar Technological University, Lonere, Raigad, Maharashtra, 402103, India, yogirajdama@dbatu.ac.in

References

  1. Tribological performance of brass powder with different copper and zinc content in the brake pad / K.A. Ahmed, S.R. Mohideen, M.A.S. Balaji, B.S. Rajan // Tribology in Industry. – 2020. – Vol. 42 (2). – P. 177–190. – doi: 10.24874/ti.783.10.19.03.
  2. Study of the interaction between microstructure, mechanical and tribo-performance of a commercial brake lining material / A. Sellami, M. Kchaou, R. Elleuch, A.-L. Cristol, Y. Desplanques // Materials & Design. – 2014. – Vol. 59. – P. 84–93. – doi: 10.1016/j.matdes.2014.02.025.
  3. Österle W., Dmitriev A.I. The role of solid lubricants for brake friction materials // Lubricants. – 2016. – Vol. 4 (1). – P. 5. – doi: 10.3390/lubricants4010005.
  4. Effect of material selection and surface texture on tribological properties of key friction pairs in water hydraulic axial piston pumps: a review / Y. Liang, W. Wang, Z. Zhang, H. Xing, C. Wang, Z. Zhang, T. Guan, D. Gao // Lubricants. – 2023. – Vol. 11 (8). – P. 324. – doi: 10.3390/lubricants11080324.
  5. Kumar M., Bijwe J. Studies on reduced scale tribometer to investigate the effects of metal additives on friction coefficient – temperature sensitivity in brake materials // Wear. – 2010. – Vol. 269 (11–12). – P. 838–846. – doi: 10.1016/j.wear.2010.08.012.
  6. Saffar A., Shojaei A., Arjmand M. Theoretical and experimental analysis of the thermal, fade and wear characteristics of rubber-based composite friction materials // Wear. – 2010. – Vol. 269 (1–2). – P. 145–151. – doi: 10.1016/j.wear.2010.03.021.
  7. Aranganathan N., Mahale V., Bijwe J. Effects of aramid fiber concentration on the friction and wear characteristics of non-asbestos organic friction composites using standardized braking tests // Wear. – 2016. – Vol. 354. – P. 69–77. – doi: 10.1016/j.wear.2016.03.002.
  8. McElheny D., Frydman V., Frydman L. A solid-state 13C NMR analysis of molecular dynamics in aramid polymers // Solid State Nuclear Magnetic Resonance. – 2006. – Vol. 29 (1–3). – P. 132–141. – doi: 10.1016/j.ssnmr.2005.08.010.
  9. Prasad V.V., Talupula S. A review on reinforcement of basalt and aramid (Kevlar 129) fibers // Materials Today: Proceedings. – 2018. – Vol. 5 (2). – P. 5993–5998. – doi: 10.1016/j.matpr.2017.12.202.
  10. Review on the friction and wear of brake materials / X. Xiao, Y. Yin, J. Bao, L. Lu, X. Feng // Advances in Mechanical Engineering. – 2016. – Vol. 8 (5). – doi: 10.1177/1687814016647300.
  11. Kumar M., Bijwe J. Composite friction materials based on metallic fillers: sensitivity of μ to operating variables // Tribology International. – 2011. – Vol. 44 (2). – P. 106–113. – doi: 10.1016/j.triboint.2010.09.013.
  12. Kumar M., Bijwe J. NAO friction materials with various metal powders: tribological evaluation on full-scale inertia dynamometer // Wear. – 2010. – Vol. 269 (11–12). – P. 826–837. – doi: 10.1016/j.wear.2010.08.011.
  13. Bachchhav B.D., Hendre K.N. Wear performance of asbestos-free brake pad materials // Jordan Journal of Mechanical & Industrial Engineering. – 2022. – Vol. 16 (4). – P. 459–469.
  14. Prabhu T.R. Effect of bimodal size particles reinforcement on the wear, friction and mechanical properties of brake composites // Tribology-Materials, Surfaces & Interfaces. – 2016. – Vol. 10 (4). – P. 163–171. – doi: 10.1080/17515831.2016.1262587.
  15. Performance assessment of phenolic-based non-asbestos organic brake friction composite materials with different abrasives / T. Singh, A. Patnaik, R. Chauhan, I. Bíró, E. Jánosi, G. Fekete // Acta Polytechnica Hungarica. – 2020. – Vol. 17 (5). – P. 49–67. – doi: 10.12700/APH.17.5.2020.5.3.
  16. The role of graphitic carbon nitride in the formulation of copper-free friction composites designed for automotive brake pads / V. Matejka, M. Leonardi, P. Praus, G. Straffelini, S. Gialanella // Metals. – 2022. – Vol. 12 (1). – P. 123. – doi: 10.3390/met12010123.
  17. Effect of space fillers in brake friction composites on airborne particle emission: a case study with BaSO4, Ca(OH)2, and CaCO3 / J. Park, J. Gweon, H. Seo, W. Song, D. Lee, J. Choi, Y.C. Kim, H. Jang // Tribology International. – 2022. – Vol. 165. – P. 107334. – doi: 10.1016/j.triboint.2021.107334.
  18. Prediction of wear rate of glass-filled PTFE composites based on machine learning approaches / A.R. Deshpande, A.P. Kulkarni, N. Wasatkar, V. Gajalkar, M. Abdullah // Polymers. – 2024. – Vol. 16 (18). – P. 2666. – doi: 10.3390/polym16182666.
  19. Влияние направления печати на характер износа PLA-биоматериала, полученного методом FDM: исследование для имплантата тазобедренного сустава / Й.Б. Дама, Б.Ф. Джоги, Р. Паваде, А.П. Кулкарни // Обработка металлов (технология, оборудование, инструменты). – 2024. – Т. 26, № 4. – С. 19–40. – doi: 10.17212/1994-6309-2024-26.4-19-40.
  20. Hendre K., Bachchhav B. Tribological behavior of non-asbestos brake pad material // Materials Today: Proceedings. – 2021. – Vol. 38. – P. 2549–2554. – doi: 10.1016/j.matpr.2020.07.560.
  21. Mechanical and wear behavior of LM25 aluminium matrix hybrid composite reinforced with boron carbide, graphite and iron oxide / V. Suresh, P. Vikram, R. Palanivel, R.F. Laubscher // Materials Today: Proceedings. – 2018. – Vol. 5 (14). – P. 27852–27860. – doi: 10.1016/j.matpr.2018.10.023.
  22. Sethupathi P.B., Chandradass J., Saibalaji M.A. Comparative study of disc brake pads sold in Indian market – impact on safety and environmental aspects // Environmental Technology & Innovation. – 2021. – Vol. 21. – P. 101245. – doi: 10.1016/j.eti.2020.101245.
  23. Chowdhury I.R., Pemberton R., Summerscales J. Developments and industrial applications of basalt fibre reinforced composite materials // Journal of Composites Science. – 2022. – Vol. 6 (12). – P. 367. – doi: 10.3390/jcs6120367.
  24. Effect of basalt fibers for reinforcing resin-based brake composites / X. Zhao, J. Ouyang, H. Yang, Q. Tan // Minerals. – 2020. – Vol. 10 (6). – P. 490. – doi: 10.3390/min10060490.
  25. Influence of binder on thermomechanical and tribological performance in brake pad / B.S. Rajan, M.A.S. Balaji, K. Sathickbasha, P. Hariharasakthisudan // Tribology in Industry. – 2018. – Vol. 40 (4). – P. 654–669. – doi: 10.24874/ti.2018.40.04.12.
  26. High frictional stability of braking material reinforced by basalt fibers / K. Yu, X. Shang, X. Zhao, L. Fu, X. Zuo, H. Yang // Tribology International. – 2023. – Vol. 178. – P. 108048. – doi: 10.1016/j.triboint.2022.108048.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».