Исследование свойств сплавов на основе кремниевой бронзы, напечатанных с применением технологии электронно-лучевого аддитивного производства

Обложка

Цитировать

Полный текст

Аннотация

Введение. Аддитивные технологии позволяют сократить затраты на материалы за счет сокращения припусков под окончательную размерную механическую обработку заготовок. Для таких дорогостоящих материалов, как медь и медные сплавы, данный способ является во многом привлекательным с точки зрения повышения ресурсоэффективности при производстве. Эксплуатационные свойства сплава БрКМц 3-1, изготовленного с применением аддитивных технологий, изучены не в полной мере и требуют проведения дополнительных исследований. Целью работы является исследование структурно-фазового состояния, механических и эксплуатационных свойств образцов бронзы БрКМц 3-1, напечатанных с применением технологии электронно-лучевого аддитивного производства. В работе исследованы образцы, изготовленные из проволоки БрКМц 3-1, с разной величиной тепловложения, часть из которых была подвергнута термической и механической обработке, а также образцы, изготовленные с применением мультипроволочной технологии. В работе используются такие методы исследований, как исследование коррозионной стойкости бронзовых образцов с помощью потенциостата, конфокальная лазерная сканирующая микроскопия, испытания на трение и рентгенофазовый анализ. Результаты и обсуждение. Обработка образцов посредством пластической деформации сжатием и последующего отжига привела к наиболее серьезным структурным изменениям. На основе рентгенофазового анализа установлено, что более высокое содержание кремния наблюдается в случае добавки к бронзе силуминов. Исследование механических свойств показало, что наиболее высокими прочностными свойствами обладают образцы, напечатанные с применением мультипроволочной технологии. При проведении трибоиспытаний выявлено колебание величины коэффициента трения, обусловленное схемой проведения эксперимента и комбинированным адгезионно-окислительным механизмом изнашивания образцов. Добавка к бронзе 10 вес.% алюминиевого филамента в процессе аддитивного производства является эффективным средством для повышения устойчивости материала к электрохимической коррозии и повышения его износостойкости.

Об авторах

А. В. Филиппов

Email: avf@ispms.ru
канд. техн. наук, Институт физики прочности и материаловедения СО РАН, пр. Академический, 2/4, г. Томск, 634055, Россия, avf@ispms.ru

Е. С. Хорошко

Email: eskhoroshko@gmail.com
Институт физики прочности и материаловедения СО РАН, пр. Академический, 2/4, г. Томск, 634055, Россия, eskhoroshko@gmail.com

Н. Н. Шамарин

Email: shnn@ispms.ru
Институт физики прочности и материаловедения СО РАН, пр. Академический, 2/4, г. Томск, 634055, Россия, shnn@ispms.ru

Е. А. Колубаев

Email: eak@ispms.ru
доктор техн. наук, Институт физики прочности и материаловедения СО РАН, пр. Академический, 2/4, г. Томск, 634055, Россия, eak@ispms.ru

С. Ю. Тарасов

Email: tsy@ispms.ru
доктор техн. наук, Институт физики прочности и материаловедения СО РАН, пр. Академический, 2/4, г. Томск, 634055, Россия, tsy@ispms.ru

Список литературы

  1. Schütze M., Feser R., Bender R. Corrosion resistance of copper and copper alloys. – Wiley, 2011. – 752 p.
  2. Horn T.J., Gamzina D. Additive manufacturing of copper and copper alloys // Additive Manufacturing Processes. – ASM International, 2020. – P. 388–418. – doi: 10.31399/asm.hb.v24.a0006579.
  3. Adler L., Fu Z., Koerner C. Electron beam based additive manufacturing of Fe3Al based iron aluminides – processing window, microstructure and properties // Materials Science and Engineering A. – 2020. – Vol. 785. – P. 139369. – doi: 10.1016/j.msea.2020.139369.
  4. Evaluation of electron beam powder bed fusion additive manufacturing of high purity copper for overhang structures using in-situ real time backscatter electron monitoring / C. Ledford, C. Rock, M. Tung, H. Wang, J. Schroth, T. Horn // Procedia Manufacturing. – 2020. – Vol. 48. – P. 828–838. – doi: 10.1016/j.promfg.2020.05.120.
  5. Obtaining of bimetallic product from nickel superalloy and heat-resistant bronze by wire-feed electron beam additive manufacturing / A.V. Chumaevskii, E.A. Kolubaev, K.S. Osipovich, D.A. GurIanov, V.E. Rubtsov, S.Y. Nikonov, A.E. Boltrushevich // Russian Physics Journal. – 2022. – Vol. 65. – P. 1231–1238. – doi: 10.1007/s11182-022-02756-5.
  6. A novel approach for powder bed-based additive manufacturing of compositionally graded composites / Z. Fu, J. Ye, M. Franke, C. Körner // Additive Manufacturing. – 2022. – Vol. 56. – P. 102916. – doi: 10.1016/j.addma.2022.102916.
  7. Characterization of gradient CuAl–B4C composites additively manufactured using a combination of wire-feed and powder-bed electron beam deposition methods / A.V. Filippov, E.S. Khoroshko, N.N. Shamarin, N.L. Savchenko, E.N. Moskvichev, V.R. Utyaganova, E.A. Kolubaev, A.Y. Smolin, S.Y. Tarasov // Journal of Alloys and Compounds. – 2021. – Vol. 859. – P. 157824. – doi: 10.1016/j.jallcom.2020.157824.
  8. Aluminum Bronze/Udimet 500 composites prepared by electron-beam additive double-wire-feed manufacturing / A. Zykova, A. Chumaevskii, A. Panfilov, A. Vorontsov, A. Nikolaeva, K. Osipovich, A. Gusarova, V. Chebodaeva, S. Nikonov, D. Gurianov, A. Filippov, A. Dobrovolsky, E. Kolubaev, S. Tarasov // Materials (Basel). – 2022. – Vol. 15. – P. 6270. – doi: 10.3390/ma15186270.
  9. Small scale testing of IN718 single crystals manufactured by EB-PBF / M.R. Gotterbarm, M. Seifi, D. Melzer, J. Dzugan, A.A. Salem, Z.H. Liu, C. Körner // Additive Manufacturing. – 2020. – Vol. 36. – P. 101449. – doi: 10.1016/j.addma.2020.101449.
  10. Electron-optical in-situ crack monitoring during electron beam powder bed fusion of the Ni-base superalloy CMSX-4 / J. Bäreis, N. Semjatov, J. Renner, J. Ye, F. Zongwen, C. Körner // Progress in Additive Manufacturing. – 2022. – doi: 10.1007/s40964-022-00357-9.
  11. Features of the macro-, micro-, and fine structure of the nickel superalloy product material formed by the method of electron beam additive manufacturing / S. Fortuna, D. Gurianov, S. Nikonov, K. Ivanov, Y. Mironov, A. Vorontsov // Materials. – 2022. – Vol. 15. – P. 8882. – doi: 10.3390/ma15248882.
  12. Assessment of structure and properties homogeneity after repairing of a nickel-based superalloy product by the electron beam additive technology / D. Gurianov, S. Fortuna, S. Nikonov, T. Kalashnikova, A. Chumaevskii, V. Utyaganova, E. Kolubaev, V. Rubtsov // Crystals. – 2022. – Vol. 12. – P. 1400. – doi: 10.3390/cryst12101400.
  13. Microstructure and properties of TiAl processed via an electron beam powder bed fusion capsule technology / J. Bieske, M. Franke, M. Schloffer, C. Körner // Intermetallics. – 2020. – Vol. 126. – P. 106929. – doi: 10.1016/j.intermet.2020.106929.
  14. In-situ aluminum control for titanium aluminide via electron beam powder bed fusion to realize a dual microstructure / J. Knörlein, M.M. Franke, M. Schloffer, C. Körner // Additive Manufacturing. – 2022. – Vol. 59. – P. 103132. – doi: 10.1016/j.addma.2022.103132.
  15. Impact of the power-dependent beam diameter during electron beam additive manufacturing: a case study with γ-TiAl / M. Reith, C. Breuning, M. Franke, C. Körner // Applied Sciences. – 2022. – Vol. 12. – P. 11300. – doi: 10.3390/app122111300.
  16. Electron beam-based additive manufacturing of Fe93.5Si6.5 (Wt.%) soft magnetic material with controllable magnetic performance / J. Yang, Z. Fu, J. Ye, D. Kübrich, C. Körner // Scripta Materialia. – 2022. – Vol. 210. – P. 114460. – doi: 10.1016/j.scriptamat.2021.114460.
  17. Characterization of AA7075/AA5356 gradient transition zone in an electron beam wire-feed additive manufactured sample / V. Utyaganova, A. Filippov, S. Tarasov, N. Shamarin, D. Gurianov, A. Vorontsov, A. Chumaevskii, S. Fortuna, N. Savchenko, V. Rubtsov, E. Kolubaev // Materials Characterization. – 2021. – Vol. 172. – P. 110867. – doi: 10.1016/j.matchar.2020.110867.
  18. Controlling the porosity using exponential decay heat input regimes during electron beam wire-feed additive manufacturing of Al-Mg alloy / V.R. Utyaganova, A.V. Filippov, N.N. Shamarin, A.V. Vorontsov, N.L. Savchenko, S.V. Fortuna, D.A. Gurianov, A.V. Chumaevskii, V.E. Rubtsov, S.Yu. Tarasov // International Journal of Advanced Manufacturing Technology. – 2020. – Vol. 108. – P. 2823–2838. – doi: 10.1007/s00170-020-05539-9.
  19. Processing, microstructure, and mechanical behavior of AZ31 magnesium alloy fabricated by electron beam additive manufacturing / X. Zhang, H. Shi, X. Wang, S. Zhang, P. Luan, X. Hu, C. Xu // Journal of Alloys and Compounds. – 2023. – Vol. 938. – P. 168567. – doi: 10.1016/j.jallcom.2022.168567.
  20. Wolf T., Fu Z., Körner C. Selective electron beam melting of an aluminum bronze: microstructure and mechanical properties // Materials Letters. – 2019. – Vol. 238. – P. 241–244. – doi: 10.1016/j.matlet.2018.12.015.
  21. Formation of microstructure and mechanical characteristics in electron beam additive manufacturing of aluminum bronze with an in-situ adjustment of the heat input / A.P. Zykova, A.O. Panfilov, A.V. Chumaevskii, A.V. Vorontsov, S.Yu. Nikonov, E.N. Moskvichev, D.A. Gurianov, N.L. Savchenko, S.Yu. Tarasov, E.A. Kolubaev // Russian Physics Journal. – 2022. – Vol. 65, iss. 5. – P. 811–817. – doi: 10.1007/s11182-022-02701-6.
  22. The effect of heat input, annealing, and deformation treatment on structure and mechanical properties of electron beam additive manufactured (EBAM) silicon bronze / A. Filippov, N. Shamarin, E. Moskvichev, N. Savchenko, E. Kolubaev, E. Khoroshko, S. Tarasov // Materials. – 2022. – Vol. 15. – P. 3209. – doi: 10.3390/ma15093209.
  23. Structure and mechanical properties of Cu–Al–Si–Mn system-based copper alloy obtained by additive manufacturing / E.S. Khoroshko, A.V. Filippov, N.N. Shamarin, E.N. Moskvichev, V.R. Utyaganova, S.Yu. Tarasov, N.L. Savchenko, E.A. Kolubaev, V.E. Rubtsov, D.V. Lychagin // Russian Physics Journal. – 2021. – Vol. 64. – P. 333–339. – doi: 10.1007/s11182-021-02333-2.
  24. Casting of copper and copper alloys casting // ASM Handbook. Vol. 15. – ASM International, 2008. – P. 1026–1048.
  25. Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions / T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, J.J. Jonas // Progress in Materials Science. – 2014. – Vol. 60. – P. 130–207. – doi: 10.1016/j.pmatsci.2013.09.002.
  26. Ponweiser N., Richter K.W. New investigation of phase equilibria in the system Al–Cu–Si // Journal of Alloys and Compounds. – 2012. – Vol. 512. – P. 252–263. – doi: 10.1016/j.jallcom.2011.09.076.
  27. Iqbal J., Ahmed F., Hasan F. Development of microstructure in silicon-aluminum-bronze // Pakistan Journal of Engineering and Applied Sciences. – 2008. – Vol. 3. – P. 47–53.
  28. Miettinen J. Thermodynamic description of the Cu–Al–Si system in the copper-rich corner // Calphad. – 2007. – Vol. 31. – P. 449–456. – doi: 10.1016/j.calphad.2007.05.001.
  29. Hisatsune C. Constitution diagram of the copper–silicon–aluminium system // Memoirs of the College of Engineering, Kyoto Imperial University. – 1935. – Vol. 9. – P. 18–47.
  30. Wilson F.H. The copper-rich corner of the copper-aluminum-silicon diagram // Metals Technology. – 1948. – Vol. 15. – P. 1–12.
  31. Calorimetric measurements and assessment of the binary Cu–Si and ternary Al–Cu–Si phase diagrams / B. Hallstedt, J. Gröbner, M. Hampl, R. Schmid-Fetzer // Calphad. – 2016. – Vol. 53. – P. 25–38.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML


Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».