Patterns of reverse-polarity plasma torches wear during cutting of thick rolled sheets

Abstract

The introduction describes the features of the process of plasma cutting of various metals and alloys using reverse-polarity plasma torches with and the features of cutting thick sheets. The purpose of the work is to study the wear process of plasma torches operating on reverse polarity current when cutting thick rolled sheets of aluminum and titanium alloys. Research methods include optical and scanning electron microscopy, filming of the cutting process and visual inspection of plasma torch elements after receiving specimens. Results and discussion. The section shows the appearance of the main working elements of the plasma torch after cutting in various modes, which led to both stable and gradual wear and to catastrophic failure of the plasma torch. The results of structural studies of the main characteristic zones of nozzles and electrodes after cutting are presented. The studies carried out made it possible to establish the main reasons for the failure of the working elements reverse-polarity plasma torches. The causes of catastrophic failure of plasma torches include failure to maintain the gap between the nozzle and the electrode and melting of the channel of gas supply into the discharge chamber. The wear of nozzles and electrodes in a stable mode can be intensified due to abnormal operation of the starting arc, the presence of manufacturing inaccuracies and excess gas pressure. In conclusion, the main conclusions based on the results of the research are formulated. The process of wear of electrodes, nozzles and body elements of plasma torches during operation at high electric arc power values is described.

About the authors

E. A. Sidorov

Email: eas@ispms.ru
ORCID iD: 0009-0009-2665-7514
Institute of Strength Physics and Materials Sciences SB RAS, 2/4, pr. Akademicheskii, Tomsk, 634055, Russian Federation, eak@ispms.tsc.ru

A. V. Grinenko

Email: giga2011@yandex.ru
ORCID iD: 0009-0002-9511-1303
ITS-Siberia LLC, Krasnoyarsk, 16a Severnoe shosse, 660118, Russian Federation, giga2011@yandex.ru

A. V. Chumaevsky

Email: tch7av@gmail.com
ORCID iD: 0000-0002-1983-4385
Ph.D. (Engineering), Institute of Strength Physics and Materials Sciences SB RAS, 2/4, pr. Akademicheskii, Tomsk, 634055, Russian Federation, tch7av@gmail.com

A. O. Panfilov

Email: alexpl@ispms.ru
ORCID iD: 0000-0001-8648-0743
Institute of Strength Physics and Materials Sciences SB RAS, 2/4, pr. Akademicheskii, Tomsk, 634055, Russian Federation, alexpl@ispms.ru

E. O. Knyazhev

Email: clothoid@ispms.tsc.ru
ORCID iD: 0000-0002-1984-9720
Institute of Strength Physics and Materials Sciences SB RAS, 2/4, pr. Akademicheskii, Tomsk, 634055, Russian Federation, clothoid@ispms.tsc.ru

A. V. Nikolaeva

Email: nikolaeva@ispms.tsc.ru
ORCID iD: 0000-0001-8708-8540
Institute of Strength Physics and Materials Sciences SB RAS, 2/4, pr. Akademicheskii, Tomsk, 634055, Russian Federation, nikolaeva@ispms.tsc.ru

A. M. Cheremnov

Email: amc@ispms.tsc.ru
ORCID iD: 0000-0003-2225-8232
Institute of Strength Physics and Materials Sciences SB RAS, 2/4, pr. Akademicheskii, Tomsk, 634055, Russian Federation, amc@ispms.tsc.ru

V. E. Rubtsov

Email: rvy@ispms.tsc.ru
ORCID iD: 0000-0003-0348-1869
Ph.D. (Physics and Mathematics), Institute of Strength Physics and Materials Sciences SB RAS, 2/4, pr. Akademicheskii, Tomsk, 634055, Russian Federation, rvy@ispms.tsc.ru

V. R. Utyaganova

Email: veronika_ru@ispms.ru
ORCID iD: 0000-0002-2303-8015
Institute of Strength Physics and Materials Sciences SB RAS, 2/4, pr. Akademicheskii, Tomsk, 634055, Russian Federation, veronika_ru@ispms.ru

K. S. Osipovich

Email: osipovich_k@ispms.ru
ORCID iD: 0000-0001-9534-775X
Institute of Strength Physics and Materials Sciences SB RAS, 2/4, pr. Akademicheskii, Tomsk, 634055, Russian Federation, osipovich_k@ispms.ru

E. A. Kolubaev

Email: eak@ispms.tsc.ru
ORCID iD: 0000-0001-7288-3656
D.Sc. (Engineering), Institute of Strength Physics and Materials Sciences SB RAS, 2/4, pr. Akademicheskii, Tomsk, 634055, Russian Federation, eak@ispms.tsc.ru

References

  1. Modeling of the polycrystalline cutting of austenitic stainless steel based on dislocation density theory and study of burr formation mechanism / J. Wen, L. He, T. Zhou [et al.] // Journal of Mechanical Science and Technology. – 2023. – Vol. 37 (6). – P. 2855–2870. – doi: 10.1007/s12206-023-0512-8.
  2. Akkurt A. The effect of cutting process on surface microstructure and hardness of pure and Al 6061 aluminium alloy // Engineering Science and Technology, an International Journal. – 2015. – Vol. 18 (3). – P. 303–308. – doi: 10.1016/j.jestch.2014.07.004.
  3. A virtual sensing approach for quality and productivity optimization in laser flame cutting / N. Levichev, A. Tomás García, R. Dewil, J.R. Duflou // The International Journal of Advanced Manufacturing Technology. – 2022. – Vol. 121. – P. 6799–6810. – doi: 10.1007/s00170-022-09750-8.
  4. Electrical arc contour cutting based on a compound arc breaking mechanism / G.-J. He, L. Gu, Y.-M. Zhu, J.-P. Chen, W.-S. Zhao, K.P. Rajurkar // Advances in Manufacturing. – 2022. – Vol. 10 (4). – P. 583–595. – doi: 10.1007/s40436-022-00406-0.
  5. Optimizing process parameters of in-situ laser assisted cutting of glass–ceramic by applying hybrid machine learning models / J. Wei, W. He, C. Lin, J. Zhang, J. Chen, J. Xiao, J. Xu // Advanced Engineering Informatics. – 2024. – Vol. 62. – P. 102590. – doi: 10.1016/j.aei.2024.102590.
  6. Laser cutting of aluminum alloys using pulsed radiation from a CO2 laser under conditions of an optical discharge in an argon jet / V.B. Shulyat’;ev, M.A. Gulov, E.V. Karpov, A.G. Malikov, K.R. Boiko // Bulletin of the Lebedev Physics Institute. – 2023. – Vol. 50 (suppl. 10). – P. S1075–S1078. – doi: 10.3103/S1068335623220116.
  7. Influence of the parameters of chemical thermal treatment of copper slag particles on the quality of hydroabrasive cutting / G.V. Barsukov, M.F. Selemenev, T.A. Zhuravleva, I.N. Kravchenko, E.M. Selemeneva, O.V. Barmina // Journal of Machinery Manufacture and Reliability. – 2023. – Vol. 52 (7). – P. 679–686. – doi: 10.1134/S1052618823070075.
  8. Boulos M.I., Fauchais P., Pfender E. Plasma torches for cutting, welding and PTA coating // Handbook of Thermal Plasmas. – Cham: Springer, 2023. – doi: 10.1007/978-3-319-12183-3_47-2.
  9. Sharma D.N., Kumar J.R. Optimization of dross formation rate in plasma arc cutting process by response surface method // Materials Today: Proceedings. – 2020. – Vol. 32. – P. 354–357. – doi: 10.1016/j.matpr.2020.01.605.
  10. Shchitsyn V.Yu., Yazovskikh V.M. Effect of polarity on the heat input into the nozzle of a plasma torch // Welding International. – 2002. – Vol. 16 (6). – P. 485–487. – doi: 10.1080/09507110209549563.
  11. Ilii S.M., Coteata M. Plasma arc cutting cost // International Journal of Material Forming. – 2009. – Vol. 2 (suppl. 1). – P. 689–692. – doi: 10.1007/s12289-009-0588-4.
  12. An experimental analysis of cutting quality in plasma arc machining / M. Gostimirovic, D. Rodic, M. Sekulic, A. Aleksic // Advanced Technologies & Materials. – 2020. – Vol. 45 (1). – P. 1–8. – doi: 10.24867/ATM-2020-1-001.
  13. Structural features and morphology of surface layers of AA2024 and AA5056 aluminum alloys during plasma cutting / A.V. Grinenko, E.O. Knyazhev, A.V. Chumaevskii, A.V. Nikolaeva, A.O. Panfilov, A.M. Cheremnov, L.L. Zhukov, A.V. Gusarova, P.S. Sokolov, D.A. Gurianov, V.E. Rubtsov, E.A. Kolubaev // Russian Physics Journal. – 2023. – Vol. 66. – P. 925–933. – doi: 10.1007/s11182-023-03025-9.
  14. Structure Formation in Surface Layers of Aluminum and Titanium Alloys during Plasma Cutting / A.V. Chumaevskii, A.V. Nikolaeva, A.V. Grinenko, A.O. Panfilov, E.O. Knyazhev, A.M. Cheremnov, V.R. Utyaganova, V.A. Beloborodov, P.S. Sokolov, D.A. Gurianov, E.A. Kolubaev // Physical Mesomechanics. – 2023. – Vol. 26. – P. 711–721. – doi: 10.1134/S1029959923060103.
  15. Отработка методики плазменной резки меди марки М1, алюминиевого сплава Д16Т и титанового сплава ОТ4-1 с использованием плазмотрона с обратной полярностью / В.Е. Рубцов, А.О. Панфилов, Е.О. Княжев, А.В. Николаева, А.М. Черемнов, А.В. Гусарова, В.А. Белобородов, А.В. Чумаевский, А.Н. Иванов // Обработка металлов (технология, оборудование, инструменты). – 2022. – Т. 24, № 4. – С. 33–52. – doi: 10.17212/1994-6309-2022-24.4-33-52.
  16. Влияние высокоэнергетического воздействия при плазменной резке на структуру и свойства поверхностных слоёв алюминиевых и титановых сплавов / В.Е. Рубцов, А.О. Панфилов, Е.О. Княжев, А.В. Николаева, А.М. Черемнов, А.В. Гусарова, В.А. Белобородов, А.В. Чумаевский, А.В. Гриненко, Е.А. Колубаев // Обработка металлов (технология, оборудование, инструменты). – 2023. – Т. 25, № 4. – С. 216–231. – doi: 10.17212/1994-6309-2023-25.4-216-231.
  17. Matushkina I., Anakhov S., Pyckin Yu. Design of a new gas-dynamic stabilization system for a metal-cutting plasma torch // Journal of Physics: Conference Series. – 2021. – Vol. 2094. – P. 042075. – doi: 10.1088/1742-6596/2094/4/042075.
  18. Gariboldi E., Previtali B. High tolerance plasma arc cutting of commercially pure titanium // Journal of Materials Processing Technology. – 2005. – Vol. 160 (1). – P. 77–89. – doi: 10.1016/j.jmatprotec.2004.04.366.
  19. Cinar Z., Asmael M., Zeeshan Q. Developments in plasma arc cutting (PAC) of steel alloys: a review // Jurnal Kejuruteraan. – 2018. – Vol. 30 (1). – P. 7–16. – doi: 10.17576/jkukm-2018-30(1)-02.
  20. Kudrna L., Fries J., Merta M. Influences on plasma cutting quality on CNC machine // Multidisciplinary Aspects of Production Engineering. – 2019. – Vol. 2. – P. 108–117. – doi: 10.2478/mape-2019-0011.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».