Manufacturing of tool electrodes with optimized configuration for copy-piercing electrical discharge machining by rapid prototyping method

Cover Page

Cite item

Abstract

Introduction. This paper presents the results of obtaining a complex-profile tool electrode (TE) for copy-and-pierce electrical discharge machining by casting technology. This method consists in using a master model by rapid prototyping method. The purpose of the work: experimental study of accuracy assurance in manufacturing of complex-profile TE by casting with the use of rapid prototyping technology for copy-piercing electrical discharge machining. Research Methods. The master model of TE was produced on the Envisiontec Perfactory XEDE machine using stereolithography technology. Si500 photopolymer was used as a starting material. Intermediate and final surface deviation measurements were performed on a Contura Carl Zeiss G2 CMM. Calculation of the gutter and feed system was performed in ProCast software. A casting was obtained from casting brass LC40S (Cu-40 Zn-Pb). The study of the process of copy-piercing electrical discharge machining of TE made by casting with the use of rapid prototyping technology was carried out with the help of Smart CNC copy-piercing machine in the environment of transformer oil. Operating parameters: pulse turn-on time (Ton, μs), voltage (U, V), current (I, A). Results and discussion. The methodology of design and manufacturing of complex-profile TE with application of rapid prototyping technology for copy-piercing electrical discharge machining is developed. The analysis of shape deviation shows that errors occur during the manufacturing of the master model by stereolithography. An experimental study of the shape deviation of the master model shows surface concavity in the range of 0.03 to 0.07 mm depending on the arrangement of the sides. It is shown that the optimized master model has 25 % less shape deviation. A sprue-feeding system (SFS) is developed for the fabrication of TE by casting technology. When porosity is evaluated, it is found that pores are concentrated in the SFS and riser, which positively affects the quality of the casting. Manufacturing of the tool electrode with the help of casting technology showed that all accuracy and roughness parameters are within the specified tolerance and correspond to the initial drawing data. Experimental study of the process of electroerosion machining of the profile groove of the TE manufactured by casting on the investment casting model obtained with the use of rapid prototyping technology is carried out. It is established that the dimensions of the obtained groove meet the stated requirements.

About the authors

T. R. Ablyaz

Email: lowrider11-13-11@mail.ru
ORCID iD: 0000-0001-6607-4692
Ph.D. (Engineering), Associate Professor, Perm National Research Polytechnic University, 29 Komsomolsky prospekt, Perm, 614990, Russian Federation, lowrider11-13-11@mail.ru

V. B. Blokhin

Email: warkk98@mail.ru
ORCID iD: 0009-0009-2693-6580
Perm National Research Polytechnic University, 29 Komsomolsky prospekt, Perm, 614990, Russian Federation, warkk98@mail.ru

E. S. Shlykov

Email: Kruspert@mail.ru
ORCID iD: 0000-0001-8076-0509
Ph.D. (Engineering), Perm National Research Polytechnic University, 29 Komsomolsky prospekt, Perm, 614990, Russian Federation, Kruspert@mail.ru

K. R. Muratov

Email: Karimur_80@mail.ru
ORCID iD: 0000-0001-7612-8025
D.Sc. (Engineering), Perm National Research Polytechnic University, 29 Komsomolsky prospekt, Perm, 614990, Russian Federation, Karimur_80@mail.ru

I. V. Osinnikov

Email: ilyuhaosinnikov@bk.ru
ORCID iD: 0009-0006-4478-3803
Perm National Research Polytechnic University, 29 Komsomolsky prospekt, Perm, 614990, Russian Federation, ilyuhaosinnikov@bk.ru

References

  1. Predictive model of milling force for complex profile milling / X. Su, G. Wang, J. Yu, F. Jiang, J. Li, Y. Rong // The International Journal of Advanced Manufacturing Technology. – 2016. – Vol. 87. – P. 1653–1662. – doi: 10.1007/s00170-016-8589-1.
  2. Additive manufacturing of Nickel-based superalloy: optimization of surface roughness using integrated high-speed milling / D. Sommer, A. Safi, C. Esen, R. Hellmann // Proceedings of SPIE. – 2024. – Vol. 12876: Laser 3D Manufacturing XI. – doi: 10.1117/12.3000972.
  3. Influence of the sphero-cylindrical tool orientation angles on roughness under processing complex-profile surfaces / M.R. Gimadeev, A.V. Nikitenko, V.O. Berkun // Advanced Engineering Research. – 2023. – Vol. 23 (3). – P. 231–240. – doi: 10.23947/2687-1653-2023-23-3-231-240.
  4. Ho K.H., Newman S.T. State of the art electrical discharge machining (EDM) // International Journal of Machine Tools and Manufacture. – 2003. – Vol. 43 (13). – P. 1287–1300. – doi: 10.1016/S0890-6955(03)00162-7.
  5. Porwal R.K., Yadava V., Ramkumar J. Micro electrical discharge machining of micro-hole // Advanced Science Engineering and Medicine. – 2020. – Vol. 12 (11). – P. 1335–1339. – doi: 10.1166/asem.2020.2586.
  6. Rajurkar K.P., Sundaram M.M., Malshe A.P. Review of electrochemical and electrodischarge machining // Procedia CIRP. – 2013. – Vol. 6 (2). – P. 13–26. – doi: 10.1016/j.procir.2013.03.002.
  7. Rathod R., Kamble D., Ambhore N. Performance evaluation of electric discharge machining of titanium alloy – a review // Journal of Engineering and Applied Science. – 2022. – Vol. 69 (1). – P. 1–19. – doi: 10.1186/s44147-022-00118-z.
  8. Melchels F.P.W., Feijen J., Grijpma D.W. A review on stereolithography and its applications in biomedical engineering // Biomaterials. – 2010. – Vol. 31. – P. 6121–6130. – doi: 10.1016/j.biomaterials.2010.04.050.
  9. Continuous liquid interface production of 3D objects / J.R. Tumbleston, D. Shirvanyants, N. Ermoshkin, R. Janusziewicz, A.R. Johnson, D. Kelly, K. Chen, R. Pinschmidt, J.P. Rolland, A. Ermoshkin, E.T. Samulski, J.M. DeSimone // Science. – 2015. – Vol. 6228 (347). – P. 1349–1352. – doi: 10.1126/science.aaa2397.
  10. One-step volumetric additive manufacturing of complex polymer structures / M. Shusteff, A.E.M. Browar, B.E. Kelly, J. Henriksson, T.H. Weisgraber, R.M. Panas, N.X. Fang, C.M. Spadaccini // Science Advances. – 2017. – Vol. 3 (12). – P. 1–7. – doi: 10.1126/sciadv.aao5496.
  11. Layerless fabrication with continuous liquidinterface production / R. Janusziewicza, J.R. Tumblestonb, A.L. Quintanillac, S.J. Mechama, J.M. DeSimonea // Proceedings of the National Academy of Sciences. – 2016. – Vol. 113 (42). – P. 1–6. – doi: 10.1073/pnas.1605271113.
  12. Rapid multi-material 3D printing with projection micro-stereolithography using dynamic fluidic control / D. Han, C. Yang, N.X. Fangb, H. Lee // Additive Manufacturing. – 2019. – Vol. 27 (17). – P. 606–615. – doi: 10.1016/j.addma.2019.03.031.
  13. Jigang H., Qin Q., Jie W. A review of stereolithography: processes and systems // Processes. – 2020. – Vol. 8 (9). – P. 1–16. – doi: 10.3390/pr8091138.
  14. Polymers for 3D printing and customized additive manufacturing / S.C. Ligon, R. Liska, J. Stampfl, M. Gurr, R. Mu?lhaupt // Chemical Reviews. – 2017. – Vol. 117 (15). – doi: 10.1021/acs.chemrev.7b00074.
  15. Stansbury J.W., Idacavage M.J. 3D printing with polymers: challenges among expanding options and opportunities // Dental Materials. – 2016. – Vol. 32 (1). – P. 54–64. – doi: 10.1016/j.dental.2015.09.018.
  16. D printing of polymer matrix composites: a review and prospective / X. Wang, M. Jiang, Z. Zhou, J. Gou, D. Hui // Composites, Part B: Engineering. – 2017. – Vol. 110. – P. 442–458. – doi: 10.1016/j.compositesb.2016.11.034.
  17. Golabczak A., Konstantynowicz A., Golabczak M. Mathematical modelling of the physical phenomena in the interelectrode gap of the EDM process by means of cellular automata and field distribution equations // Experimental and Numerical Investigation of Advanced Materials and Structures. – Cham: Springer, 2013. – P. 169–184. – doi: 10.1007/978-3-319-00506-5_11.
  18. Quantitative analysis of bubble size and electrodes gap at different dielectric conditions in powder mixed EDM process / A. Kumar, A. Mandal, A.R. Dixit, D.K. Mandal // The International Journal of Advanced Manufacturing Technology. – 2020. – Vol. 4 (1). – P. 1–11. – doi: 10.1007/s00170-020-05189-x.
  19. Using rapid prototyping technologies for creating implants with cellular structure / P.N. Kilina, V.P. Vasilyuk, E.A. Morozov, A.M. Khanov, L.D. Sirotenko // Biosciences Biotechnology Research Asia. – 2015. – Vol. 12 (2). – P. 1691–1698. – doi: 10.13005/bbra/1832.
  20. Real-space wigner-seitz cells imaging of potassium on graphite via elastic atomic manipulation / F. Yin, P. Koskinen, S. Kulju, J. Akola, R.E. Palmer // Scientific Reports. – 2015. – Vol. 5 (1). – P. 1–5. – doi: 10.1038/srep08276.
  21. Cho Y., Lee I., Cho D.W. Laser scanning path generation considering photopolymer solidification in micro-stereolithography // Microsystem Technologies. – 2005. – Vol. 11 (2). – P. 158–167. – doi: 10.1007/s00542-004-0468-2.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).