Increasing the durability of drill bit teeth by changing its manufacturing technology

Abstract

Introduction. The development of the mining industry requires increasing the durability and safe tool performance life. For bits of mining drilling machines, this problem is often solved by improving the material of the teeth of these bits. The paper presents the results of a study on the development of a technology for the manufacture of hard-alloy drill bits with increased wear resistance and testing of prototypes when drilling hard rocks. Changes in technology have led to changes in the shape of the tooth. Also, purer tungsten powder was used as the initial component. Research methods. The paper studies carbide teeth of bits manufactured at JSC Almalyk Mining and Metallurgical Combine using standard and modified technology. Its structure and chemical composition were studied. Results and discussion. New methods for performing technological operations for the manufacture of carbide teeth (pins) and steel pin bits are developed and mastered. Tungsten-cobalt teeth were manufactured using VK10KS (90 %W; 10 % Co) hard alloy, produced using tungsten carbide powder synthesized by carbidization of purified tungsten powder. The shape of the tooth surface was changed from ballistic to semi-ballistic. Metallic cobalt powder was used as a binder. Pin bits of the KNSh40×25 type are made of 0.35 C-Cr-Mn-Si steel. Tests of experimental bits were carried out at several mines, as a result of which its suitability for drilling rocks with a hardness of f` = 14–18 was established. The results of industrial operation showed that the durability of the teeth of bits manufactured by JSC Almalyk Mining and Metallurgical Combine is not significantly inferior to bits from European manufacturers. At the same time, the cost of such bits is several times lower.

About the authors

J. B. Toshov

Email: j.toshov@tdtu.uz
ORCID iD: 0000-0003-4278-1557
D.Sc. (Engineering), Professor, Tashkent State Technical University, 2, University st., Tashkent, 100095, Republic of Uzbekistan, j.toshov@tdtu.uz

D. M. Fozilov

Email: fozilovdoniyor81@gmail.com
ORCID iD: 0009-0005-6362-8326
JSC "Scientific and Production Association" Almalyk MMC", 1 V. Gaidarova st., Chirchik, 111700, Republic of Uzbekistan, fozilovdoniyor81@gmail.com

K. K. Yelemessov

Email: k.yelemessov@satbayev.univ
ORCID iD: 0000-0001-6168-2787
Ph.D. (Engineering), Professor, K.I. Satbayev Kazakh National Research Technical University, 2 Satbaev st., Almaty, 050013, Republic of Kazakhstan, k.yelemessov@satbayev.university

U. N. Ruziev

Email: u.ruziev@agmk.uz
ORCID iD: 0009-0008-2371-3085
JSC "Scientific and Production Association" Almalyk MMC", 1 V. Gaidarova st., Chirchik, 111700, Republic of Uzbekistan, u.ruziev@agmk.uz

D. N. Abdullayev

Email: dn.abdullaev@agmk.uz
ORCID iD: 0009-0005-6362-8326
JSC "Scientific and Production Association" Almalyk MMC", 1 V. Gaidarova st., Chirchik, 111700, Republic of Uzbekistan, dn.abdullaev@agmk.uz

D. D. Baskanbayeva

Email: d.baskanbayeva@satbayev.univ
ORCID iD: 0000-0003-1688-0666
D.Sc. (Engineering), K.I. Satbayev Kazakh National Research Technical University, 2 Satbaev st., Almaty, 050013, Republic of Kazakhstan, d.baskanbayeva@satbayev.university

L. Bekirova

Email: lala.bakirova@asoiu.edu.az
ORCID iD: 0000-0003-0584-7916
D.Sc. (Engineering), Professor, Azerbaijan State Oil and Industry University, 34 Azadliq Ave., Baku, AZ1010, Azerbaijan, lala.bakirova@asoiu.edu.az

References

  1. Жуков И.А., Голиков Н.С., Мартюшев Н.В. Рационализация конструкции секции скребкового конвейера средствами автоматизированного метода анализа прочностных характеристик // Устойчивое развитие горных территорий. – 2022. – Т. 14, № 1. – С. 142–150. – doi: 10.21177/1998-4502-2022-14-1-142-150.
  2. Логический подход к построению модели машинного обучения для оценки устойчивого развития горных территорий / С.В. Галачиева, С.А. Махошева, Л.А. Лютикова, А.М. Тлехугов // Устойчивое развитие горных территорий. – 2023. – Т. 15, № 4. – С. 921–928. – doi: 10.21177/1998-4502-2023-15-4-921-928.
  3. Клюев Р.В. Системный анализ методов расчета систем электроснабжения карьеров // Устойчивое развитие горных территорий. – 2024. – Т. 16, № 1. – С. 302–310. – doi: 10.21177/1998-4502-2024-16-1-302-310.
  4. Simulation analysis of rock braking mechanism of tunnel boring machine / L. Zhu, T. Wei, B. Liu, T. Yu // Technical Gazette. – 2016. – Vol. 23 (6). – P. 1585–1590. – doi: 10.17559/TV-20141107084349.
  5. The resource efficiency assessment technique for the foundry production / I.G. Vidayev, N.V. Martyushev, A.S. Ivashutenko, A.M. Bogdan // Advanced Materials Research. – 2014. – Vol. 880. – P. 141–145. – doi: 10.4028/ href='www.scientific.net/AMR.880.141' target='_blank'>www.scientific.net/AMR.880.141.
  6. Research on slim-hole drilling technology for shale gas geological survey in China / H. Zhao, H. Wu, L. Shen, Zh. Zhu, Y. Shan // Petroleum Research. – 2024. – Vol. 9 (3). – P. 451–461. – doi: 10.1016/j.ptlrs.2024.03.006.
  7. Influence of W addition on microstructure and mechanical properties of Al-12%Si alloys / A. Zykova, N. Martyushev, V. Skeeba, D. Zadkov, A. Kuzkin // Materials. – 2019. – Vol. 12 (6). – P. 981. – doi: 10.3390/ma12060981.
  8. Hard rock cutting with high pressure jets in various ambient pressure regimes / T. Stoxreiter, A. Martin, D. Teza, R. Galler // International Journal of Rock Mechanics and Mining Sciences. – 2018. – Vol. 108. – P. 179–188. – doi: 10.1016/j.ijrmms.2018.06.007.
  9. Ardashkin I.B., Yakovlev A.N. Evaluation of the resource efficiency of foundry technologies: methodological aspect // Advanced Materials Research. – 2014. – Vol. 1040. – P. 912–916. – doi: 10.4028/ href='www.scientific.net/AMR.1040.912' target='_blank'>www.scientific.net/AMR.1040.912.
  10. Balci C., Bilgin N. Correlative study of linear small and full-scale rock cutting tests to select mechanized excavation machines // International Journal of Rock Mechanics and Mining Sciences. – 2007. – Vol. 44 (3). – P. 468–476. – doi: 10.1016/j.ijrmms.2006.09.001.
  11. Zverev E.A., Skeeba V.Yu. Integrated quality ensuring technique of plasma wear resistant coatings // Key Engineering Materials. – 2017. – Vol. 736. – P. 132–137. – doi: 10.4028/ href='www.scientific.net/KEM.736.132' target='_blank'>www.scientific.net/KEM.736.132.
  12. Niu Z., Jiao F., Cheng K. An innovative investigation on chip formation mechanisms in micro-milling using natural diamond and tungsten carbide tools // Journal of Manufacturing Processes. – 2018. – Vol. 31 (1). – P. 382–394. – doi: 10.1016/j.jmapro.2017.11.023.
  13. Numerical simulation of temperature field in steel under action of electron beam heating source / V.Yu. Skeeba, V.V. Ivancivsky, N.V. Martyushev, N.V. Vakhrushev, A.K. Zhigulev // Key Engineering Materials. – 2016. – Vol. 712. – P. 105–111. – doi: 10.4028/ href='www.scientific.net/KEM.712.105' target='_blank'>www.scientific.net/KEM.712.105.
  14. Self-rotatory performance of conical cutter interacted with rock material / X. Liu, P. Tang, X. Li, M. Tian // Engineering Failure Analysis. – 2017. – Vol. 80. – P. 197–209. – doi: 10.1016/j.engfailanal.2017.06.030.
  15. Efficiency of well drilling with air blowing based on the use of a vortex tube / J.B. Toshov, K.T. Sherov, B.N. Absadykov, R.U. Djuraev, M.R. Sikhimbayev // News of the National Academy of Sciences of the Republic of Kazakhstan. Series of Geology and Technical Sciences. – 2023. – Vol. 4 (460). – P. 225–235. – doi: 10.32014/2023.2518-170X.331.
  16. Теплякова А.В., Жуков И.А., Мартюшев Н.В. Применение бурильных машин с ударным кулачковым механизмом в различных горно-геологических условиях // Устойчивое развитие горных территорий. – 2022. – Т. 14, № 3. – С. 501–511. – doi: 10.21177/1998-4502-2022-14-3-501-511.
  17. Куликова Е.Ю., Баловцев С.В., Скопинцева О.В. Комплексная оценка геотехнических рисков в шахтном и подземном строительстве // Устойчивое развитие горных территорий. – 2023. – Т. 15, № 1. – С. 7–16. doi: 10.21177/1998-4502-2023-15-1-7-16.
  18. Toshov J.B. The questions of the dynamics of drilling bit on the surface of well bottom // Archives of Mining Sciences. – 2016. – Vol. 61 (2). – P. 275–283. – doi: 10.1515/amsc-2016-0020.
  19. Analysis of interaction of rock breaking tool with rock in the drilling process / J.B. Toshov, K.T. Sherov, M.R. Sikhimbayev, B.N. Absadykov, A. Esirkepov // News of the National Academy of Sciences of the Republic of Kazakhstan. Series of Geology and Technical Sciences. – 2024. – Vol. 1 (463). – P. 271–281. – doi: 10.32014/2024.2518-170X.380.
  20. Башлык С.М., Загибайло Г.Т. Бурение скважин. – М.: Недра, 1983. – 447 с.
  21. Kinematic features of a new drill bit of the tornado-like bottom-hole model / J. Tian, X. Pang, Z. Liang, L. Yang, L. Zhang, Q. Wei, Y. Li, Y. Zhu // Acta Petrolei Sinica. – 2013. – Vol. 34 (6). – P. 1163–1167.
  22. Мендебаев Т.Н., Смашов Н.Ж. Многокамерная забойная гидромашина роторного типа для бурения скважин // Устойчивое развитие горных территорий. – 2022. – Т. 14, № 2. – С. 303–309. – doi: 10.21177/1998-4502-2022-14-2-303-309.
  23. Породорежущий инструмент для геологоразведочных скважин: cправочник / Н.И. Корнилов, Л.К. Берестень, Д.И. Коган, В.С. Травкин. – М.: Недра, 1979. – 359 с.
  24. Справочник инженера по бурению разведочных скважин. Т. 1 / под общ. ред. Е.А. Козловского. – М.: Недра, 1984. – 512 с.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).