Designing the homogenization mechanism

Abstract

Introduction. The primary goal of food processing equipment manufacturing is to create highly efficient process equipment that can increase labor productivity while reducing energy costs. Improving existing and creating new high-performance equipment for food production is one of the main trends in the development of modern mechanical engineering. The term “homogenization” literally means “increasing uniformity”. In the context of emulsions, homogenization refers to the process of treating emulsions, which leads to the fragmentation of the dispersed phase. Homogenization is the process of grinding liquid or mashed foods by passing it at high speed and pressure through narrow annular slots. The authors propose to use cam-type mechanisms for homogenization. Cam-type mechanisms allow for a more efficient allocation of the time for the product suction and injection. The homogenization process benefits from the potential to reduce the speed during product injection. The purpose of the work is to reduce power consumption during homogenization. The research methods are based on the theory of machines and mechanisms. These methods enabled developing a methodology for synthesizing the homogenizer drive mechanism and designing a machine that ensures its operation in accordance with the proposed cycle diagram. Results and discussion. The synthesis of mechanisms is executed with consideration for the workload, which was calculated for existing domestic machines in the production of processed cheese. Thus, with a given production capacity of 550 l/h and a plunger diameter of 28 mm, the technological force is F = 12315 N. In accordance with the authors' proposals, the design of the homogenizer is modified by introducing cam mechanisms. In the design of this drive, a novel cycle diagram is proposed, enabling an increase in product injection time and a reduction in suction time. According to the novel cycle diagram, 280° is proposed for product injection and 80° for suction. In this case, the power on the drive shaft is equal to P = 2.5 kW instead of 3.5 kW for the existing design, driven by a crank mechanism. The power consumption is decreased by 26 %.

About the authors

Y. I. Podgornyj

Email: pjui@mail.ru
ORCID iD: 0000-0002-1664-5351
D.Sc. (Engineering), Professor; 1. Novosibirsk State Technical University, 20 Prospekt K. Marksa, Novosibirsk, 630073, Russian Federation; 2. Novosibirsk Technological Institute (branch) A.N. Kosygin Russian State University (Technologies. Design. Art), 35 Krasny prospekt (5 Potaninskayast.), Novosibirsk, 630099, Russian Federation; pjui@mail.ru

V. Yu. Skeeba

Email: skeeba_vadim@mail.ru
ORCID iD: 0000-0002-8242-2295
Ph.D. (Engineering), Associate Professor, Novosibirsk State Technical University, 20 Prospekt K. Marksa, Novosibirsk, 630073, Russian Federation, skeeba_vadim@mail.ru

T. G. Martynova

Email: martynova@corp.nstu.ru
ORCID iD: 0000-0002-5811-5519
Ph.D. (Engineering), Novosibirsk State Technical University, 20 Prospekt K. Marksa, Novosibirsk, 630073, Russian Federation, martynova@corp.nstu.ru

A. V. Sadykin

Email: artur060779@gmail.com
ORCID iD: 0009-0002-2061-650X
Novosibirsk State Technical University, 20 Prospekt K. Marksa, Novosibirsk, 630073, Russian Federation, artur060779@gmail.com

N. V. Martyushev

Email: martjushev@tpu.ru
ORCID iD: 0000-0003-0620-9561
Ph.D. (Engineering), Associate Professor, National Research Tomsk Polytechnic University, 30 Lenin Avenue, Tomsk, 634050, Russian Federation, martjushev@tpu.ru

D. V. Lobanov

Email: lobanovdv@list.ru
ORCID iD: 0000-0002-4273-5107
D.Sc. (Engineering), Associate Professor, I.N. Ulianov Chuvash State University, 15 Moskovsky Prospekt, Cheboksary, 428015, Russian Federation, lobanovdv@list.ru

A. K. Pelemeshko

Email: pyatkova.arina@gmail.com
ORCID iD: 0009-0004-5916-6782
Ph.D. (Engineering) student, Novosibirsk State Technical University, 20 Prospekt K. Marksa, Novosibirsk, 630073, Russian Federation, pyatkova.arina@gmail.com

A. S. Popkov

Email: andrej.popkov.2013@mail.ru
ORCID iD: 0009-0006-5587-9990
Ph.D. (Engineering) student, Novosibirsk State Technical University, 20 Prospekt K. Marksa, Novosibirsk, 630073, Russian Federation, andrej.popkov.2013@mail.ru

References

  1. Inguva P., Grasselli S., Heng P.W.S. High pressure homogenization – An update on its usage and understanding // Chemical Engineering Research and Design. – 2024. – Vol. 202. – P. 284–302. – doi: 10.1016/j.cherd.2023.12.026.
  2. Chen X., Liang L., Xu X. Advances in converting of meat protein into functional ingredient via engineering modification of high pressure homogenization // Trends in Food Science & Technology. – 2020. – Vol. 106. – P. 12–29. – doi: 10.1016/j.tifs.2020.09.032.
  3. Chevalier-Lucia D., Picart-Palmade L. High-pressure homogenization in food processing // Green food processing techniques / ed. by F. Chemat, E. Vorobiev. – Elsevier: Academic Press, 2019. – P. 139–157. – doi: 10.1016/B978-0-12-815353-6.00005-7.
  4. The influence mechanism of pH and polyphenol structures on the formation, structure, and digestibility of pea starch-polyphenol complexes via high-pressure homogenization / D. Luo, J. Fan, M. Jin, X. Zhang, J. Wang, H. Rao, W. Xue // Food Research International. – 2024. – Vol. 194. – P. 114913. – doi: 10.1016/j.foodres.2024.114913.
  5. Optimization of olive oil based O/W nanoemulsions prepared through ultrasonic homogenization: a response surface methodology approach / T. Mehmood, A. Ahmad, A. Ahmed, Z. Ahmed // Food Chemistry. – 2017. – Vol. 229. – P. 790–796. – doi: 10.1016/j.foodchem.2017.03.023.
  6. Comparative study of oil-in-water emulsions encapsulating fucoxanthin formulated by microchannel emulsification and high-pressure homogenization / Z. Ma, Y. Zhao, N. Khalid, G. Shu, M.A. Neves, I. Kobayashi, M. Nakajima // Food Hydrocolloids. – 2020. – Vol. 108. – P. 105977. – doi: 10.1016/j.foodhyd.2020.105977.
  7. Подгорный Ю.И., Скиба В.Ю., Мартынова Т.Г. Технологическое оборудование: расчет и проектирование. – Новосибирск: Изд-во НГТУ, 2024. – 107 с. – ISBN 978-5-7782-5308-7. – EDN DEIRZT.
  8. Recent advances in design and stability of double emulsions: trends in Pickering stabilization / E. Tenorio-Garcia, A. Araiza-Calahorra, E. Simone, A. Sarkar // Food Hydrocolloids. – 2022. – Vol. 128. – P. 107601. – doi: 10.1016/j.foodhyd.2022.107601.
  9. Emulsifier functionality and process engineering: progress and challenges / A.L.R. Costa, A. Gomes, C.C.P. Andrade, R.L. Cunha // Food Hydrocolloids. – 2017. – Vol. 68. – P. 69–80. – doi: 10.1016/j.foodhyd.2016.10.012.
  10. Скиба В.Ю., Иванцивский В.В. Гибридное металлообрабатывающее оборудование: повышение эффективности технологического процесса обработки деталей при интеграции поверхностной закалки и абразивного шлифования. – Новосибирск: Изд-во НГТУ, 2018. – 312 с. – ISBN 978-5-7782-3690-5. – EDN PKBFNF.
  11. Моделирование несущих систем технологических машин / Ю.И. Подгорный, В.Ю. Скиба, А.В. Кириллов, В.Н. Пушнин, И.А. Ерохин, Д.Ю. Корнев // Обработка металлов (технология, оборудование, инструменты). – 2014. – № 2 (63). – С. 91–99. – EDN SMYRYJ.
  12. Исследование и выбор параметров при проектировании технологических машин / Ю.И. Подгорный, В.Ю. Скиба, Т.Г. Мартынова, О.В. Максимчук. – Новосибирск: Изд-во НГТУ, 2020. – 260 с. – (Монографии НГТУ). – ISBN 978-5-7782-4177-0. – EDN VZWWWY.
  13. Подгорный Ю.И., Мартынова Т.Г., Скиба В.Ю. Синтез технологических машин. Расчет и конструирование. – Новосибирск: Изд-во НГТУ, 2023. – 240 с. – (Монографии НГТУ). – ISBN 978-5-7782-4912-7. – doi: 10.17212/978-5-7782-4912-7. – EDN TVPPKR.
  14. Flores P., Souto A.P., Marques F. The first fifty years of the mechanism and machine theory: standing back and looking forward // Mechanism and Machine Theory. – 2018. – Vol. 125. – P. 8–20. – doi: 10.1016/j.mechmachtheory.2017.11.017.
  15. Topology and dimension synchronous optimization design of 5-DoF parallel robots for in-situ machining of large-scale steel components / K. Chen, M. Wang, X. Huo, P. Wang, T. Sun // Mechanism and Machine Theory. – 2023. – Vol. 179. – P. 105105. – doi: 10.1016/j.mechmachtheory.2022.105105.
  16. Eckhardt H.D. Kinematic design of machines and mechanisms. – 1st еd. – New York: McGraw-Hill, 1998. – 620 p. – ISBN 0070189536. – ISBN 978-0070189539.
  17. Erdman A.G., Sandor G.N. Mechanism design: analysis and synthesis. – 4th ed. – Upper Saddle River, NJ: Pearson, 2001. – 688 p. – ISBN 0130408727. – ISBN 978-0130408723.
  18. Hsieh J.-F. Design and analysis of indexing cam mechanism with parallel axes // Mechanism and Machine Theory. – 2014. – Vol. 81. – P. 155–165. – doi: 10.1016/j.mechmachtheory.2014.07.004.
  19. Design of compliant mechanisms using continuum topology optimization: a review / B. Zhu, X. Zhang, H. Zhang, J. Liang, H. Zang, H. Li, R. Wang // Mechanism and Machine Theory. – 2012. – Vol. 143. – P. 103622. – doi: 10.1016/j.mechmachtheory.2019.103622.
  20. Dresig H., Vul'fson I.I. Dynamik der mechanismen. – Wien; New York: Springer, 1989. – 328 p. – ISBN 978-3-7091-9036-4. – doi: 10.1007/978-3-7091-9035-7.
  21. Фролов К.В. Теория механизмов и машин. – М.: Высшая школа, 1987. – 496 с.
  22. Vulfson I. Dynamics of cyclic machines. – Cham: Springer International, 2015. – 390 p. – ISBN 978-3-319-12633-3. – doi: 10.1007/978-3-319-12634-0.
  23. Артоболевский И.И. Теория механизмов и машин: учебник для втузов. – 4-е изд., перераб. и доп. – М.: Наука, 1988. – 640 с. – ISBN 5-02-013810-X.
  24. Rothbart H.A. Cam design handbook. – New York: McGraw-Hill Professional, 2003. – 606 p. – ISBN 0071377573. – ISBN 978-0875841830.
  25. Faxin L., Xianzhang F. The design of parallel combination for cam mechanism // Procedia Environmental Sciences. – 2011. – Vol. 10, pt. B. – P. 1343–1349. – doi: 10.1016/j.proenv.2011.09.215.
  26. Sateesh N., Rao C.S.P., Janardhan Reddy T.A. Optimisation of cam-follower motion using B-splines // International Journal of Computer Integrated Manufacturing. – 2009. – Vol. 22 (6). – P. 515–523. – doi: 10.1080/09511920802546814.
  27. Myszka D.H. Machines & mechanisms: applied kinematic analysis. – 4th ed. – Upper Saddle River, NJ: Pearson, 2012. – 376 p. – ISBN 0132157802. – ISBN 978-0132157803.
  28. S&A – Expert system for planar mechanisms design / H. Varbanov, T. Yankova, K. Kulev, S. Lilov // Expert Systems with Applications. – 2006. – Vol. 31 (3). – P. 558–569. – doi: 10.1016/j.eswa.2005.09.081.
  29. Ondrášek J. The synthesis of a hook drive cam mechanism // Procedia Engineering. – 2014. – Vol. 92. – P. 320–329. – doi: 10.1016/j.proeng.2014.12.129.
  30. Mott R.L. Machine elements in mechanical design. – 5th ed. – Upper Saddle River, NJ: Pearson, 2013. – 816 p. – ISBN 0135077931. – ISBN 978-0135077931.
  31. Design and analysis of high-speed cam mechanism using Fourier series / C. Zhoua, B. Hua, S. Chen, L. Mac // Mechanism and Machine Theory. – 2016. – Vol. 104. – P. 118–129. – doi: 10.1016/j.mechmachtheory.2016.05.009.
  32. Тир К.В. Комплексный расчет кулачковых механизмов. – М.: Машгив, 1958. – 380 с.
  33. Kinematic analysis of crank-cam mechanism of process equipment / Yu.I. Podgornyj, V.Yu. Skeeba, T.G. Martynova, N.S. Pechorkina, P.Yu. Skeeba // IOP Conference Series: Materials Science and Engineering. – 2018. – Vol. 327. – P. 042080. – doi: 10.1088/1757-899X/327/4/042080.
  34. Проектирование кулачкового механизма с учетом технологической нагрузки и энергетических затрат / Ю.И. Подгорный, В.Ю. Скиба, А.В. Кириллов, О.В. Максимчук, П.Ю. Скиба // Обработка металлов (технология, оборудование, инструменты). – 2017. – № 2 (75). – С. 17–27. – doi: 10.17212/1994-6309-2017-2-17-27.
  35. Motion laws synthesis for cam mechanisms with multiple follower displacement / Yu.I. Podgornyj, V.Yu. Skeeba, A.V. Kirillov, T.G. Martynova, P.Yu. Skeeba // IOP Conference Series: Materials Science and Engineering. – 2018. – Vol. 327. – P. 042079. – doi: 10.1088/1757-899X/327/4/042079.
  36. Фиалкова Е.А. Гомогенизация. Новый взгляд. – СПб.: ГИОРД, 2006. – 386 с. – ISBN 5-98879-032-1.
  37. Машины и аппараты пищевых производств. В 2 кн. Кн. 1: учебник для вузов / под ред. В.А. Панфилова. – М.: Высшая школа, 2001. – 703 с. – ISBN 5-06-004168-9.
  38. Fomin A., Paramonov M. Synthesis of the four-bar double-constraint mechanisms by the application of the Grubler's method // Procedia Engineering. – 2016. – Vol. 150. – P. 871–877. – doi: 10.1016/j.proeng.2016.07.034.
  39. To the theory of mechanisms subfamilies / A. Fomin, L. Dvornikov, M. Paramonov, A. Jahr // IOP Conference Series: Materials Science and Engineering. – 2016. – Vol. 124. – P. 012055. – doi: 10.1088/1757-899X/124/1/012055.
  40. Неклютин Д.А. Оптимальное проектирование кулачковых механизмов на ЭВМ. – М.: Алмата, 1977. – 215 с.
  41. Тартаковский И.И. Некоторые задачи синтеза оптимальных законов движения // Машиностроение. – 1971. – № 2. – С. 39–43.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).