Predicting machined surface quality under conditions of increasing tool wear

Cover Page

Cite item

Abstract

Introduction. The most important factor determining the efficiency of metal cutting is the quality of the surface of the part obtained during cutting. The surface quality of a machined part is directly dependent on the vibration activity of the cutting tool, the amplitude of which is influenced by the complex evolutionary dynamics of the cutting process. In light of this, modern digital twin technology, which allows predicting the surface quality values of the parts using virtual models, is becoming an extremely relevant way to improve the efficiency in metalworking control systems. The purpose of the work. This study aims to improve the prediction accuracy of a digital twin system for the surface quality of the machined parts under conditions of increasing cutting tool wear. The paper examines: the dynamics of the turning process of metal parts, as well as a mathematical model describing the dynamics of tool vibrations during metal machining on lathes, considering the influence of the thermodynamic subsystem of the cutting system. Research methods. An experimental approach was employed, utilizing a author-designed measuring stand along with a modern inverted metallographic microscope LaboMet-I version 4, equipped with wide-angle lenses 5/20, having a 20 mm linear field of view, and a digital camera for microscopes Ucam-1400 with a 1.4 μm×1.4 μm matrix, and a contour profile recorder T4HD. Furthermore, the study used mathematical modeling of the dynamic cutting system in the Matlab environment, for which the authors developed a specialized data processing program. Results and discussion. Curves depicting the tool wear rate, changes in the quality parameters of the machined surface as functions of cutting path, and as a function of cutting tool wear are constructed. Dynamic indicators suitable for parametric identification of virtual digital twin models are determined. The structure of these models is established, and parametric identification is performed. Numerical modeling is conducted in the Matlab environment, based on the results of which a curve depicting the change in average arithmetic surface roughness as a function of increasing tool wear is constructed. The convergence of the results of field and numerical experiments is evaluated, which shows a high reliability of the surface quality prediction achievable through the use of digital twin systems.

About the authors

V. P. Lapshin

Email: Lapshin1917@yandex.ru
ORCID iD: 0000-0002-5114-0316
Ph.D. (Engineering), Associate Professor, Don State Technical University, 1 Gagarin square, Rostov-on-Don, 344000, Russian Federation, Lapshin1917@yandex.ru

A. A. Gubanova

Email: anatoliya81@mail.ru
ORCID iD: 0000-0002-9785-5384
Ph.D. (Engineering), Don State Technical University, 1 Gagarin square, Rostov-on-Don, 344000, Russian Federation, anatoliya81@mail.ru

I. O. Dudinov

Email: ilya.sandman@yandex.ru
ORCID iD: 0009-0009-0784-1287
Don State Technical University, 1 Gagarin square, Rostov-on-Don, 344000, Russian Federation, ilya.sandman@yandex.ru

References

  1. Суслов А.Г. Качество поверхностного слоя деталей машин. – М.: Машиностроение, 2000. – 320 с. – ISBN 5-217-02976-5.
  2. Гимадеев М.П., Ли А.А. Анализ автоматизированных систем определения параметров шероховатости поверхности на основе динамического мониторинга // Advanced Engineering Research. – 2022. – Т. 22, № 2. – С. 116–129. – doi: 10.23947/2687-1653-2022-22-2-116-129.
  3. Интеллектуальная система мониторинга и управления техническим состоянием мехатронных технологических объектов / А.К. Тугенгольд, Е.А. Лукьянов, Р.Н. Волошин, В.Ф. Бонилья // Вестник Донского государственного технического университета. – 2020. – Т. 20, № 2. – С. 188–195. – doi: 10.23947/1992-5980-2020-20-2-188-195.
  4. Zakovorotnyi V.L., Gvindjiliya V.E. Influence of speeds of forming movements on the properties of geometric topology of the part in longitudinal turning // Journal of Manufacturing Processes. – 2024. – Vol. 112. – P. 202–213. – doi: 10.1016/j.jmapro.2024.01.037.
  5. Virtual process systems for part machining operations / Y. Altintas, P. Kersting, D. Biermann, E. Budak, B. Denkena, I. Lazoglu // CIRP Annals. – 2014. – Vol. 63 (2). – P. 585–605. – doi: 10.1016/j.cirp.2014.05.007.
  6. Altintas Y. Manufacturing automation: metal cutting mechanics, machine tool vibrations, and CNC design. – Cambridge; New York: Cambridge University Press, 2012. – 366 p.
  7. Altintas Y., Budak E. Analytical prediction of stability lobes in milling // CIRP Annals. – 1995. – Vol. 44 (1). – P. 357–362. – doi: 10.1016/S0007-8506(07)62342-7.
  8. Kabaldin Y.G., Shatagin D.A. Artificial intelligence and cyberphysical machining systems in digital production // Russian Engineering Research. – 2020. – Vol. 40 (4). – P. 292–296. – doi: 10.3103/S1068798X20040115.
  9. Чигиринский Ю.Л., Ингеманссон А.Р. Технологические аспекты подготовки цифрового машиностроительного производства // Наукоемкие технологии в машиностроении. – 2023. – № 9 (147). – С. 39–48. – doi: 10.30987/2223-4608-2023-39-48.
  10. Zakovorotny V.L., Gvindjiliya V.E. Process control synergetics for metal-cutting machines // Journal of Vibroengineering. – 2022. – Vol. 24 (1). – P. 177–189. – doi: 10.21595/jve.2021.22087.
  11. Digital twin-assisted intelligent fault diagnosis for bearings / S. Gong, S. Li, Y. Zhang, L. Zhou, M. Xia // Measurement Science and Technology. – 2024. – Vol. 35 (10). – P. 106128. – doi: 10.1088/1361-6501/ad5f4c.
  12. Digital twin-driven partial domain adaptation network for intelligent fault diagnosis of rolling bearing / Y. Zhang, J.C. Ji., Ren Z., Q. Ni, F. Gu, K. Feng, K. Yu, J. Ge, Z. Lei, Z. Liu // Reliability Engineering & System Safety. – 2023. – Vol. 234. – P. 109186. – doi: 10.1016/j.ress.2023.109186.
  13. A digital twin model of life-cycle rolling bearing with multiscale fault evolution combined with different scale local fault extension mechanism / T. Li, H. Shi, X. Bai, K. Zhang // IEEE Transactions on Instrumentation and Measurement. – 2023. – Vol. 72. – P. 1–11. – doi: 10.1109/TIM.2023.3243663.
  14. Digital twin-assisted dual transfer: a novel information-model adaptation method for rolling bearing fault diagnosis / Z. Li, X. Ding, Z. Song, L. Wang, B. Qin, W. Huang // Information Fusion. – 2024. – Vol. 106. – P. 102271. – doi: 10.1016/j.inffus.2024.102271.
  15. Заковоротный В.Л., Гвинджилия В.Е. Синергетический подход к повышению эффективности управления процессами обработки на металлорежущих станках // Обработка металлов (технология, оборудование, инструменты). – 2021. – Т. 23, № 3. – С. 84–99. – doi: 10.17212/1994-6309-2021-23.3-84-99.
  16. Рыжкин А.А. Синергетика изнашивания инструментальных режущих материалов (трибоэлектрический аспект). – Ростов н/Д.: Изд-во Дон. гос. техн. ун-та, 2004. – 322 с. – ISBN 5-7890-0307-9.
  17. Lapshin V.P. Turning tool wear estimation based on the calculated parameter values of the thermodynamic subsystem of the cutting system // Materials. – 2021. – Vol. 14 (21). – P. 6492. – doi: 10.3390/ma14216492.
  18. Lapshin V., Turkin I., Dudinov I. Research on influence of tool deformation in the direction of cutting and feeding on the stabilization of vibration activity during metal processing using metal-cutting machines // Sensors. – 2023. – Vol. 23 (17). – P. 7482. – doi: 10.3390/s23177482.
  19. Sensor-based intelligent tool online monitoring technology: applications and progress / J. Huang, G. Chen, H. Wei, Zh. Chen, Y. Lv // Measurement Science and Technology. – 2024. – Vol. 35 (11). – P. 112001. – doi: 10.1088/1361-6501/ad66f1.
  20. Лапшин В.П., Моисеев Д.В. Определение оптимального режима обработки металлов при анализе динамики систем управления резанием // Обработка металлов (технология, оборудование, инструменты). – 2023. – Т. 25, № 1. – С. 16–43. – doi: 10.17212/1994-6309-2023-25.1-16-43.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).