Investigation of the effect of oil-based MWFs with enhanced tribological properties on cutting forces and roughness of the processed surfaces

Abstract

Introduction. One way to enhance the efficiency of the cutting process is to develop new effective compositions of metalworking fluids (MWFs), which will reduce cutting force and temperature, while increasing the durability of the cutting tool and the quality of the processed surface. One approach to address this challenge is the chemical activation of MWF using additives based on nanoclay minerals, which are characterized by low cost and abundant reserves in-Earth. In this regard, the theoretical rationale for the selection of this additive and its impact on the tribological properties of the MWF is given. The purpose of the work is to determine the effect of oil-based additives with nanoclay minerals on reducing the cutting force, as well as improving the quality of the processed surface when drilling corrosion-resistant steel. Research methods. Experimental investigations were conducted during a drilling operation, in which the components of the cutting force were recorded using a three-component dynamometer M-30-3-6k. The aim of the experiment was to determine the effect of oil-based MWF containing additives from nanoclay minerals on the component of the cutting force, as well as the roughness of the processed surface. A formula for calculating the friction coefficient in the drilling process was derived using mathematical modeling. Results and Discussion. The experimental investigations yielded results demonstrating the effectiveness of using oil-based MWF with additives made from nanoclay minerals. Experimental data was obtained for the friction coefficient, cutting force component, as well as the roughness of the processed surface during drilling. These results were obtained using the experimental MWF, supplied to the cutting zone. The results of the study showed the effectiveness of using the modified MWF compared to traditional compositions. Conclusions. The modified MWF, which includes sunflower oil and nanoclay minerals as additives, significantly reduces the friction coefficient, cutting force, as well as the roughness of the processed surface, which opens up further prospects for its use in the metalworking industry.

About the authors

E. D. Umerov

Email: ervin777@yandex.ru
ORCID iD: 0000-0003-3477-2036
Ph.D. (Engineering), 1. Crimean Engineering and Pedagogical University named after Fevzi Yakubov, 8 Uchebnyy side st., Simferopol, 295015, Russian Federation; 2. V.I. Vernadsky Crimean Federal University, 4 Academician Vernadsky ave., Simferopol, 295007, Russian Federation; ervin777@yandex.ru

V. V. Skakun

Email: vladimir.skakun.92@list.ru
ORCID iD: 0000-0003-0656-7852
1. Crimean Engineering and Pedagogical University named after Fevzi Yakubov, 8 Uchebnyy side st., Simferopol, 295015, Russian Federation; 2. V.I. Vernadsky Crimean Federal University, 4 Academician Vernadsky ave., Simferopol, 295007, Russian Federation; vladimir.skakun.92@list.ru

R. M. Dzhemalyadinov

Email: rus.dzhemalyadinov@mail.ru
ORCID iD: 0000-0003-3319-3542
1. Crimean Engineering and Pedagogical University named after Fevzi Yakubov, 8 Uchebnyy side st., Simferopol, 295015, Russian Federation; 2. V.I. Vernadsky Crimean Federal University, 4 Academician Vernadsky ave., Simferopol, 295007, Russian Federation; rus.dzhemalyadinov@mail.ru

Y. A. Egorov

Email: yuriyegorov@cfuv.ru
ORCID iD: 0000-0003-4990-9998
Ph.D. (Physics and Mathematics), Associate Professor, V.I. Vernadsky Crimean Federal University, 4 Academician Vernadsky ave., Simferopol, 295007, Russian Federation, yuriyegorov@cfuv.ru

References

  1. Верещака А.С., Лиерат Ф., Дюбнер Л. Анализ основных аспектов проблемы экологически безопасного резания // Резание и инструмент в технологических системах. – Харьков, 2000. – Вып. 57. – С. 29–34.
  2. Худобин Л.В., Жданов В.Ф. О возможности активации СОЖ импульсными электрическими полями // Чистовая обработка деталей машин. – Саратов, 1980. – С. 49–53.
  3. Maddamasetty A., Revuru S., Sitaramaraju A. Performance evaluation of nanographite-based cutting fluid in machining process // Materials and Manufacturing Processes. – 2014. – Vol. 29 (5). – doi: 10.1080/10426914.2014.893060.
  4. Tribological studies of transmission oil dispersed with molybdenum disulfide and tungsten disulfide nanoparticles / S. Vadapalli, R.N. Thakur, J. Amitabh Kumar, B.M. Saratchandra // Journal of Tribology. – 2016. – Vol. 139 (4). – doi: 10.1115/1.4034766.
  5. Abdulgazis D., Umerov E., Abdulgazis U. Development of endothermic properties and improvement of tribotechnological properties in oil cutting and cooling lubricants // Procedia Engineering. – 2017. – Vol. 206. – P. 1503–1507. – doi: 10.1016/j.proeng.2017.10.669.
  6. O’;Sullivan D., Cotterell M. Machinability of austenitic stainless steel SS303 // Journal of Materials Processing Technology. – 2002. – Vol. 124 (1–2). – P. 153–159. – doi: 10.1016/S0924-0136(02)00197-8.
  7. Nitrogen alloyed austenitic Ni-free stainless steel for additive manufacturing / A. Antikainen, T. Jokiaho, J. Lagerbom, T. Lindroos // Powder Metallurgy. – 2024. – Vol. 67 (1–2). – doi: 10.1177/00325899241248996.
  8. Multi-objective optimization of cutting parameters in turning AISI 304 austenitic stainless steel / Y. Su, G. Zhao, Y. Zhao, J. Meng, C. Li // Metals. – 2020. – Vol. 10 (2). – doi: 10.3390/met10020217.
  9. Ahmed Y.S., Paiva J.M., Veldhuis S.C. Characterization and prediction of chip formation dynamics in machining austenitic stainless steel through supply of a high-pressure coolant // International Journal of Advanced Manufacturing Technology. – 2019. – Vol. 102. – P. 1671–1688. – doi: 10.1007/s00170-018-03277-7.
  10. Uysal A., Demiren F., Altan E. Investigation of surface roughness and chip forms in milling of stainless steel by MQL method // Acta Physica Polonica A. – 2016 – Vol. 129 (4). – P. 439–441. – doi: 10.12693/APhysPolA.129.439.
  11. Muthuswamy P., Murugesan V.G.V. Machinability analysis in high speed turning of Ti–6Al–4V alloy and investigation of wear mechanism in AlTiN PVD coated tungsten carbide tool // Engineering Research Express. – 2021. – Vol. 3 (4). – doi: 10.1088/2631-8695/ac2e12.
  12. Khan A.A., Ali M.Y., Haque M.M. A new approach of applying cryogenic coolant in turning AISI 304 stainless steel // International Journal of Mechanical and Materials Engineering. – 2010. – Vol. 5. – P. 171–174.
  13. Muthuswamy P., Nagarajan S.K. Experimental investigation on the effect of different micro-geometries on cutting edge and wiper edge on surface roughness and forces in face milling // Lubricants. – 2021. – Vol. 9 (10). – P. 102. – doi: 10.3390/lubricants9100102.
  14. Shiva Pradeep N., Padmakumar M., Sarada B.N. Experimental investigation to assess the effects of trumpet hone on tool life and surface quality in milling of AISI4140 steel // FME Transactions. – 2019. – Vol. 47 (3). – P. 437–441. – doi: 10.5937/fmet1903437S.
  15. Isik Y. Investigating the machinability of tool steels in turning operations // Materials and Design. – 2007. – Vol. 28 (5). – P. 1417–1424. – doi: 10.1016/j.matdes.2006.03.025.
  16. Абдулгазис Д.У., Мевлют Ш.Т., Абдулгазис У.А. Использование эффекта расклинивающего давления для снижения адгезионного контакта между передней поверхностью зуба сверла и стружкой // Ученые записки Крымского инженерно-педагогического университета. – 2020. – № 2 (68). – С. 237–242.
  17. Абдулгазис Д.У., Умеров Э.Д. О возможности формирования эндотермических и улучшения триботехнологических свойств масляных СОТС присадкой наноглинистых минералов листовой структуры // Известия Волгоградского технического университета. Прогрессивные технологии в машиностроении. – 2016. – № 5 (184). – С. 7–11.
  18. Ящерицын П.И., Ефремов В.Д. Основы резания металлов. – Минск: БГАТУ, 2008. – 644 с. – ISBN 978-985-6770-87-9.
  19. Abdulgazis D., Umerov E., Abdulgazis U. Analysis of mathematical models of drilling describing surface quality and tool overload protection aspects // MATEC Web of Conferences. – 2018. – Vol. 224. – doi: 10.1051/matecconf/201822401126.
  20. Смазочно-охлаждающие технологические средства и их применение при обработке резанием: справочник / под общ. ред. Л.В. Худобина. – М.: Машиностроение, 2006. – 544 с.
  21. Смазочно-охлаждающие технологические средства для обработки металлов резанием: справочник / под общ. ред. С.Г. Энтелиса, Э.М. Берлинера. – 2-е изд., перераб. и доп. – М.: Машиностроение, 1995. – 496 с.
  22. Латышев В.Н., Шлыков А.А. Влияние состава СОЖ на величину крутящих моментов и стойкость сверл // Технология машиностроения. – 1967. – № 4. – С. 25–29.
  23. ГОСТ 25142–82. Шероховатость поверхности. Термины и определения. – М.: Изд-во стандартов, 1982. – 22 с.
  24. Pirtini M., Lazoglu I. Forces and hole quality in drilling // International Journal of Machine Tools and Manufacture. – 2005. – Vol. 99. – P. 1271–1281. – doi: 10.1016/j.ijmachtools.2005.01.004.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).