Экстракт плодов черноплодной рябины (×Sorbaronia mitschurinii) влияет на выживаемость Drosophila melanogaster с моделью бокового амиотрофического склероза в зависимости от концентрации

Обложка

Цитировать

Полный текст

Аннотация

Боковой амиотрофический склероз – нейродегенеративное заболевание, проявляющееся во взрослом возрасте, характеризуется потерей двигательной активности, дегенерацией двигательных нейронов в головном, спинном мозге и, в конечном счете, остановкой дыхания. В настоящее время заболевание является неизлечимым, и механизмы его воздействия мало изучены, но активно ведутся исследования терапевтических препаратов для дальнейшего снижения осложнений и отсрочивания негативных последствий болезни. Ранее нами был показан геропротекторный потенциал экстракта плодов черноплодной рябины (×Sorbaronia mitschurinii) на D. melanogaster при кратковременном применении, а также наблюдали увеличение медианной продолжительности жизни особей линии elav[c155]-Gal4>UAS-Aβ42 (модель болезни Альцгеймера у дрозофилы). Нами выдвинута гипотеза о возможном положительном эффекте экстракта черноплодной рябины в концентрациях 0.1, 1, 5 и 10 мг/мл на выживаемость линии Drosophila с моделью бокового амиотрофического склероза (с мутацией в гене Sod1n1). Установили, что этанольный экстракт ягод в концентрации 0.1 мг/мл увеличивал медианную продолжительность жизни самцов на 22 %. При добавлении экстракта в концентрациях 1 и 5 мг/мл наблюдали снижение медианной и максимальной продолжительности жизни самцов на 14 % и 33 % соответственно. При этом экстракт черноплодной рябины не оказывал статистически значимого воздействия на продолжительность жизни самок. Данные результаты свидетельствуют о потенциальном нейропротекторном эффекте экстракта плодов черноплодной рябины.

Об авторах

Надежда Владимировна Земская

Институт биологии Коми научного центра Уральского отделения Российской академии наук

Автор, ответственный за переписку.
Email: zemskaya@ib.komisc.ru
ORCID iD: 0000-0002-8746-0020
Scopus Author ID: 56781497800

младший научный сотрудник 

Россия, 167000, Республика Коми, г. Сыктывкар, ул. Коммунистическая, д. 28

Елена Юрьевна Платонова

Институт биологии Коми научного центра Уральского отделения Российской академии наук

Email: platonova.e.u@ib.komisc.ru
ORCID iD: 0000-0002-4632-2385
Scopus Author ID: 57217200914

младший научный сотрудник 

Россия, 167000, Республика Коми, г. Сыктывкар, ул. Коммунистическая, д. 28

Наталья Ришатовна Пакшина

Институт биологии Коми научного центра Уральского отделения Российской академии наук

Email: pakshina.n.r@ib.komisc.ru
ORCID iD: 0000-0003-2076-0755
Scopus Author ID: 57222155424

младший научный сотрудник 

Россия, 167000, Республика Коми, г. Сыктывкар, ул. Коммунистическая, д. 28

Михаил Вячеславович Шапошников

Институт биологии Коми научного центра Уральского отделения Российской академии наук

Email: shaposhnikov@ib.komisc.ru
ORCID iD: 0000-0002-4625-6488
Scopus Author ID: 7004704906

доцент, кандидат биологических наук, ведущий научный сотрудник 

Россия, 167000, Республика Коми, г. Сыктывкар, ул. Коммунистическая, д. 28

Алексей Александрович Москалёв

Институт биологии Коми научного центра Уральского отделения Российской академии наук; Институт молекулярной биологии им. В. А. Энгельгардта РАН

Email: amoskalev@ib.komisc.ru
ORCID iD: 0000-0002-3248-1633
Scopus Author ID: 7003730453

доктор биологических наук, профессор, член-корреспондент РАН, заведующий лабораторией геропротекторных и радиопротекторных технологий Института биологии Коми научного центра Уральского отделения Российской академии наук; ведущий научный сотрудник Института молекулярной биологии им. В. А. Энгельгардта

Россия, 167000, Республика Коми, г. Сыктывкар, ул. Коммунистическая, д. 28; г. Москва

Список литературы

  1. Feldman, E. L. Amyotrophic lateral sclerosis / E. L. Feldman, S. A. Goutman, S. Petri [et al.] // Lancet. – 2022. – Vol. 400, № 10360. – P. 1363–1380.
  2. Grad, L. I. Clinical spectrum of amyotrophic lateral sclerosis (ALS) / L. I. Grad, G. A. Rouleau, J. Ravits [et al.] // Cold Spring Harb Perspect Med. – 2017. – Vol. 7, № 8. – P. a024117.
  3. Talbott, E. O. The epidemiology of amyotrophic lateral sclerosis / E. O. Talbott, A. M. Malek, D. Lacomis // Handb Clin Neurol. – 2016. – Vol. 138. – P. 225–238.
  4. Liguori, F. Fly for ALS: Drosophila modeling on the route to amyotrophic lateral sclerosis modifiers / F. Liguori, S. Amadio, C. Volonté // Cell Mol Life Sci. – 2021. – Vol. 78, № 17–18. – P. 6143–6160.
  5. Hegde, K. N. Drosophila melanogaster as a tool for Amyotrophic Lateral Sclerosis research / K. N. Hegde, A. Srivastava // J Dev Biol. – 2022. – Vol. 10, № 3. – P. jdb10030036.
  6. Zarei, S. A comprehensive review of amyotrophic lateral sclerosis / S. Zarei, K. Carr, L. Reiley [et al.] // Surg Neurol Int. – 2015. – Vol. 6. – P. 171.
  7. Layalle, S. Amyotrophic lateral sclerosis genes in Drosophila melanogaster / S. Layalle, L. They, S. Ourghani [et al.] // Int J Mol Sci. – 2021. – Vol. 22, № 2. – P. ijms22020904.
  8. Ilieva, H. Advances in molecular pathology, diagnosis, and treatment of amyotrophic lateral sclerosis / H. Ilieva, M. Vullaganti, J. Kwan // Bmj. – 2023. – Vol. 383. – P. e075037.
  9. Corcia, P. Treatment of hereditary amyotrophic lateral sclerosis / P. Corcia, H. Blasco, S. Beltran [et al.] // Rev Neurol (Paris). – 2023. – Vol. 179, № 1–2. – P. 54–60.
  10. Rosen, D. R. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis / D. R. Rosen // Nature. – 1993. – Vol. 364, № 6435. – P. 362.
  11. Fridovich, I. Superoxide anion radical (O2-.), superoxide dismutases, and related matters / I. Fridovich // J Biol Chem. – 1997. – Vol. 272, № 30. – P. 18515–18517.
  12. Shaw, P. J. Oxidative damage to protein in sporadic motor neuron disease spinal cord / P. J. Shaw, P. G. Ince, G. Falkous, D. Mantle // Ann Neurol. – 1995. – Vol. 38, № 4. – P. 691–695.
  13. Abe, K. Induction of nitrotyrosine-like immunoreactivity in the lower motor neuron of amyotrophic lateral sclerosis / K. Abe, L. H. Pan, M. Watanabe [et al.] // Neurosci Lett. – 1995. – Vol. 199, № 2. – P. 152–154.
  14. Beal, M. F. Increased 3-nitrotyrosine in both sporadic and familial amyotrophic lateral sclerosis / M. F. Beal, R. J. Ferrante, S. E. Browne [et al.] // Ann Neurol. – 1997. – Vol. 42, № 4. – P. 644–654.
  15. Rosen, D. R. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis / D. R. Rosen, T. Siddique, D. Patterson [et al.] // Nature. – 1993. – Vol. 362, № 6415. – P. 59–62.
  16. Barber, S. C. Oxidative stress in ALS: a mechanism of neurodegeneration and a therapeutic target / S. C. Barber, R. J. Mead, P. J. Shaw // Biochim Biophys Acta. – 2006. – Vol. 1762, № 11–12. – P. 1051–1067.
  17. Iyer, S. A comparative bioinformatic analysis of C9orf72 / S. Iyer, K. R. Acharya, V. Subramanian // PeerJ. – 2018. – Vol. 6. – P. e4391.
  18. Staveley, B. E. Phenotypic consequences of copper-zinc superoxide dismutase overexpression in Drosophila melanogaster / B. E. Staveley, J. P. Phillips, A. J. Hilliker // Genome. – 1990. – Vol. 33, № 6. – P. 867–872.
  19. Phillips, J. P. Subunit-destabilizing mutations in Drosophila copper/zinc superoxide dismutase: neuropathology and a model of dimer dysequilibrium / J. P. Phillips, J. A. Tainer, E. D. Getzoff [et al.] // Proc Natl Acad Sci USA. – 1995. – Vol. 92, № 19. – P. 8574–8578.
  20. Phillips, J. P. Null mutation of copper/zinc superoxide dismutase in Drosophila confers hypersensitivity to paraquat and reduced longevity / J. P. Phillips, S. D. Campbell, D. Michaud [et al.] // Proc Natl Acad Sci USA. – 1989. – Vol. 86, № 8. – P. 2761–2765.
  21. Nopoulos, P. C. Huntington disease: a single-gene degenerative disorder of the striatum / P. C. Nopoulos // Dialogues Clin Neurosci. – 2016. – Vol. 18, № 1. – P. 91–98.
  22. Arsac, J. N. Chronic exposure to paraquat induces alpha-synuclein pathogenic modifications in Drosophila / J. N. Arsac, M. Sedru, M. Dartiguelongue [et al.] // Int J Mol Sci. – 2021. – Vol. 22, № 21. – P. ijms222111613.
  23. Jeon, Y. Genetic dissection of Alzheimer’s disease using Drosophila models / Y. Jeon, J. H. Lee, B. Choi [et al.] // Int J Mol Sci. – 2020. – Vol. 21, № 3. – P. ijms21030884.
  24. Yamaguchi, M. Epigenetic regulation of ALS and CMT: A lesson from Drosophila models / M. Yamaguchi, K. Omori, S. Asada, H. Yoshida // Int J Mol Sci. – 2021. – Vol. 22, № 2. – P. ijms22020491.
  25. Lu, B. Drosophila models of neurodegenerative diseases / B. Lu, H. Vogel // Annu Rev Pathol. – 2009. – Vol. 4. – P. 315–342.
  26. Şahin, A. Human SOD1 ALS mutations in a Drosophila knock-in model cause severe phenotypes and reveal dosage-sensitive gain- and loss-of-function components / A. Şahin, A. Held, K. Bredvik [et al.] // Genetics. – 2017. – Vol. 205, № 2. – P. 707–723.
  27. Azuma, Y. Amyotrophic lateral sclerosis model / Y. Azuma, I. Mizuta, T. Tokuda, T. Mizuno // Adv Exp Med Biol. – 2018. – Vol. 1076. – P. 79–95.
  28. Chia, R. Novel genes associated with amyotrophic lateral sclerosis: diagnostic and clinical implications / R. Chia, A. Chiò, B. J. Traynor // Lancet Neurol. – 2018. – Vol. 17, № 1. – P. 94–102.
  29. Platonova, E. Y. Geroprotective effects of ×Sorbaronia mitschurinii fruit extract on Drosophila melanogaster / E. Y. Platonova, N. V. Zemskaya, M. V. Shaposhnikov [et al.] // Journal of Berry Research. – 2022. – Vol. 12, № 1. – P. 73–92.
  30. Jurendić, T. Aronia melanocarpa products and by-products for health and nutrition: a review / T. Jurendić, M. Ščetar // Antioxidants (Basel). – 2021. – Vol. 10, № 7. – P. antiox10071052.
  31. Ren, Y. Potential benefits of black chokeberry (Aronia melanocarpa) fruits and their constituents in improving human health / Y. Ren, T. Frank, G. Meyer [et al.] // Molecules. – 2022. – Vol. 27, № 22. – P. molecules27227823.
  32. Bushmeleva, K. Aronia melanocarpa flavonol extract-antiradical and immunomodulating activities analysis / K. Bushmeleva, A. Vyshtakalyuk, D. Terenzhev [et al.] // Plants (Basel). – 2023. – Vol. 12, № 16. – P. plants12162976.
  33. Jo, A. R. Effects of aronia extract on lifespan and age-related oxidative stress in Drosophila melanogaster / A. R. Jo, J. Y. Imm // Food Sci Biotechnol. – 2017. – Vol. 26, № 5. – P. 1399–1406.
  34. Rugină, D. Chokeberry anthocyanin extract as pancreatic β-cell protectors in two models of induced oxidative stress / D. Rugină, Z. Diaconeasa, C. Coman [et al.] // Oxid Med Cell Longev. – 2015. – Vol. 2015. – P. 429075.
  35. Platonova, E. Y. Black chokeberry (Aronia melanocarpa) extracts in terms of geroprotector criteria / E. Y. Platonova, M. V. Shaposhnikov, H.-Y. Lee [et al.] // Trends in Food Science & Technology. - 2021. - Vol. 114. - P. 57-584.
  36. Zemskaya, N. V. Issledovanie nejroprotektornyh svojstv ekstrakta chernoplodnoj ryabiny (×Sorbaronia mitschurinii) u linii Drosophila melanogaster, modeliruyushchej bolezn’ Altsgejmera [Study of neuroprotective properties of chokeberry extract (×Sorbaronia mitschurinii) in a Drosophila melanogaster line modeling Alzheimer’s disease] / N. V. Zemskaya, N. R. Pakshina, E. Yu. Platonova [et al.] // Proceedings of the Komi Science Centre of the Ural Branch of the Russian Academy of Sciences. – 2023. – Vol. 6, № 64. – P. 86–93. [In Russian]
  37. Liu, R. H. Health benefits of fruit and vegetables are from additive and synergistic combinations of phytochemicals / R. H. Liu // Am J Clin Nutr. – 2003. – Vol. 78, № 3. – P. 517s–520s.
  38. Bland, J. M. The logrank test / J. M. Bland, D. G. Altman // Bmj. – 2004. – Vol. 328, № 7447. – P. 1073.
  39. Han, S. K. OASIS portable: User-friendly offline suite for secure survival analysis / S. K. Han, H. C. Kwon, J. S. Yang [et al.] // Mol Cells. – 2024. – Vol. 47, № 2. – P. 100011.
  40. Harries, L. W. Human aging is characterized by focused changes in gene expression and deregulation of alternative splicing / L. W. Harries, D. Hernandez, W. Henley [et al.] // Aging Cell. – 2011. – Vol. 10, № 5. – P. 868–878.
  41. Dönertaş, H. M. Gene expression reversal toward pre-adult levels in the aging human brain and age-related loss of cellular identity / H. M. Dönertaş, H. İzgi, A. Kamacıoğlu [et al.] // Sci Rep. – 2017. – Vol. 7, № 1. – P. 5894.
  42. Baker, D. J. Cellular senescence in brain aging and neurodegenerative diseases: evidence and perspectives / D. J. Baker, R. C. Petersen // J Clin Invest. – 2018. – Vol. 128, № 4. – P. 1208–1216.
  43. Hou, Y. Ageing as a risk factor for neurodegenerative disease / Y. Hou, X. Dan, M. Babbar [et al.] // Nat Rev Neurol. – 2019. – Vol. 15, № 10. – P. 565–581.
  44. Arthur, K. C. Projected increase in amyotrophic lateral sclerosis from 2015 to 2040 / K. C. Arthur, A. Calvo, T. R. Price [et al.] // Nat Commun. – 2016. – Vol. 7. – P. 12408.
  45. Winter, A. N. An anthocyanin-enriched extract from strawberries delays disease onset and extends survival in the hSOD1(G93A) mouse model of amyotrophic lateral sclerosis / A. N. Winter, E. K. Ross, H. M. Wilkins [et al.] // Nutr Neurosci. – 2018. – Vol. 21, № 6. – P. 414–426.
  46. Gorąca, A. Lipoic acid – biological activity and therapeutic potential / A. Gorąca, H. Huk-Kolega, A. Piechota [et al.] // Pharmacol Rep. – 2011. – Vol. 63, № 4. – P. 849–858.
  47. Wang, T. α-Lipoic acid attenuates oxidative stress and neurotoxicity via the ERK/Akt-dependent pathway in the mutant hSOD1 related Drosophila model and the NSC34 cell line of amyotrophic lateral sclerosis / T. Wang, J. Cheng, S. Wang [et al.] // Brain Res Bull. – 2018. – Vol. 140. – P. 299–310.
  48. Juliano, C. Antioxidant activity of gamma-oryzanol: mechanism of action and its effect on oxidative stability of pharmaceutical oils / C. Juliano, M. Cossu, M. C. Alamanni, L. Piu // Int J Pharm. – 2005. – Vol. 299, № 1–2. – P. 146–154.
  49. Zhang, C. γ-Oryzanol mitigates oxidative stress and prevents mutant SOD1-related neurotoxicity in Drosophila and cell models of amyotrophic lateral sclerosis / C. Zhang, W. Liang, H. Wang [et al.] // Neuropharmacology. – 2019. – Vol. 160. – P. 107777.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».