ОПТИЧЕСКАЯ БИОМЕТРИЯ ГЛАЗА: ПРИНЦИП И ДИАГНОСТИЧЕСКИЕ ВОЗМОЖНОСТИ МЕТОДА


Цитировать

Полный текст

Аннотация

Оптическая биометрия - метод измерения биометрических параметров глаза: переднезадней оси, глубины передней камеры, толщины хрусталика и сетчатки, диаметра роговицы и кератометрии, основанный на лазерной интерферометрии. В обзоре представлен принцип метода, его преимущества и недостатки, показания и противопоказания, и сравнительная оценка характеристик современных оптических биометров: IOL-Master 500, Lenstar LS 900, Aladdin, OA-1000, OA-2000, AL-3000, AL-Scan, Galilei G6, IOL-Master 700.

Об авторах

Т. Н Киселева

ФГБУ «Московский НИИ глазных болезней им. Гельмгольца» Минздрава России

105062, Москва, РФ

О. Г Оганесян

ФГБУ «Московский НИИ глазных болезней им. Гельмгольца» Минздрава России

105062, Москва, РФ

Любовь Ивановна Романова

ФГБУ «Московский НИИ глазных болезней им. Гельмгольца» Минздрава России

Email: info@igb.ru; l.rommanova@gmail.com
младший научный сотрудник отдела ультразвуковых исследований ФГБУ «Московский НИИ глазных болезней им. Гельмгольца» Минздрава России 105062, Москва, РФ

С. В Милаш

ФГБУ «Московский НИИ глазных болезней им. Гельмгольца» Минздрава России

105062, Москва, РФ

А. В Пенкина

ФГБУ «Московский НИИ глазных болезней им. Гельмгольца» Минздрава России

105062, Москва, РФ

Список литературы

  1. Eleftheriadis H. IOL-Master biometry: refractive results of 100 consecutive cases. Br. J. Ophthalmol. 2003; 87: 960-3.
  2. Haigis W. Challenges and approaches in modern biometry and IOL calculation. Saudi J. Ophthalmol. 2012; 26: 7-12.
  3. Dietlein T.S., Roessler G., Luke Ch., Dinslage S., Roters S., Jacobi Ph.C. et al. Signal quality of biometry in silicone oil-filled eyes using partial coherence laser interferometry. J. Cataract Refract. Surg. 2005; 31: 1006-10.
  4. Manvikar S.R., Allen D., Steel D.H. Optical biometry in combined phacovitrectomy. J. Cataract Refract. Surg. 2009; 35: 64-9.
  5. Rahman R., Bong C.X., Stephenson J. Accuracy of intraocular lens power estimation in eyes having phacovitrectomy for rhegmatogenous retinal detachment. Retina. 2014; 34: 1415-20.
  6. Hill W., Angeles R., Otani T. Evaluation of a new IOL-Master algorithm to measure axial length. J. Cataract Refract. Surg. 2008; 34: 920-4.
  7. Norrby S. Sources of error in intraocular lens power calculation J. Cataract Refract. Surg. 2008; 34 (3): 368-76.
  8. Donald T. IOL-Master 700: A debut of Swept-Source OCT technology. J Cataract Refract. Surg. today Europe. 2015; 8: 67-9.
  9. Hitzenberger C.K. Optical measurement of the axial eye length by laser Doppler interferometry. Invest. Ophthalmol. 1991; 32 (3): 616-24.
  10. Chen Y.A., Hirnschall N., Findl O. Evaluation of 2 new optical biometry devices and comparison with the current gold standard biometer J. Cataract Refract. Surg. 2011; 37: 513-7.
  11. Lege B.A., Haigis. W. Laser interference biometry versus ultrasound biometry in certain clinical conditions. Graefes Arch. Clin. Exp. Ophthalmol. 2003; 242 (1): 8-12.
  12. Santodomingo-Rubido J., Mallen E.A., Gilmartin B. et al. A new non-contact optical device for ocular biometry. Br. J. Ophthalmol. 2002; 86: 458-62.
  13. Tehrani M., Krummenauer F., Kumar R., Dick H.B. Comparison of biometric measurements using partial coherence interferometry and applanation ultrasound. J. Cataract Refract. Surg. 2003; 29: 747-52.
  14. Findl O., Kriechbaum K., Sacu S. et al. Influence of operator experience on the performance of ultrasound biometry compared to optical biometry before cataract surgery. J. Cataract Refract. Surg. 2003; 29: 1950-5.
  15. Haigis W. Pseudophakic correction factors for optical biometry. Graefes Arch. Clin. Exp. Ophthalmol. 2001; 239: 589-98.
  16. Kiss B., Findl O., Menapace R. et al. Refractive outcome of cataract surgery using partial coherence interferometry and ultrasound biometry: clinical feasibility study of a commercial prototype II. J. Cataract Refract. Surg. 2002; 28: 230-4.
  17. Kola M., Duran H., Turk A., Molla Mehmetoglu S., Kalkisim A., Erdol H. Evaluation of the repeatability and the reproducibility of AL-Scan measurements obtained by residents. J. Ophthalmol. 2014; 7: 1-6.
  18. Packer M., Fine I.H., Hoffman R.S., Coffman P.G., Brown L.K. Immersion A-scan compared with partial coherence interferometry: outcomes analysis. J. Cataract Refract. Surg. 2002; 28: 239-42.
  19. Vogel A., Dick H.B., Krummenauer F. Reproducibility of optical biometry using partial coherence interferometry: intraobserver and interobserver reliability. J. Cataract Refract. Surg. 2001; 27: 1961-8.
  20. Матросова Ю.В., Халеева Д.В. Сравнительная оценка эффективности ортокератологии и склеропластики в торможении прогрессирования миопии. Вестник Тамбовского университета. 2015; 20 (3): 639-41.
  21. Тарутта Е.П., Милаш С.В., Тарасова Н.А., Романова Л.И., Маркосян Г.А., Епишина М.В. Периферическая рефракция и контур сетчатки у детей с миопией по результатам рефрактометрии и частично когерентной интерферометрии. Вестн. офтальмол. 2014; (6): 44-9.
  22. Drexler W., Findl O., Menapace R., Rainer G., Vass C., Hitzenberger C.K., Fercher A.F. Partial coherence interferometry: a novel approach to biometry in cataract surgery. Am. J. Ophthalmol. 1998; 126 (4): 524-34.
  23. Haigis W., Lege B., Miller N. et al. Comparison of immersion ultrasound biometry and partial coherence interferometry for intraocular lens calculation according to Haigis. Graefes Arch. Clin. Exp. Ophthalmol. 2000; 238: 765-73.
  24. Zhang L., Sy M.E., Mai H., Yu F., Hamilton D.R. Effect of posterior corneal astigmatism on refractive outcomes after toric intraocular lens implantation. J. Cataract Refract. Surg. 2015; 41: 84-9.
  25. Aristodemou P., Knox Cartwright N.E., Sparrow J.M., Johnston R.L. Intraocular lens formula constant optimization and partial coherence interferometry biometry: Refractive outcomes in 8108 eyes after cataract surgery. J. Cataract Refract Surg. 2011; 37 (1): 50-62.
  26. Srinivasan S. Optical biometry: Every little bit helps. J. Cataract Refract. Surg. 2015; 41 (7): 1345-6.
  27. Dawson Sh., Hogan S., Kirk R., Paterson M. MSAC’s assessment of partial coherence interferometry. In: Optical biometry using partial coherence interferometry prior to cataract surgery. 2003: ix.
  28. Rohrer K., Frueh B.E., Walti R., Clemetson I.A., Tappeiner C., Goldblum D. Comparison and evaluation of ocular biometry using a new noncontact optical low-coherence reflectometer. Ophthalmology. 2009; 116: 2087-92.
  29. Nemeth J., Fekete O., Pesztenlehrer N. Optical and ultrasound measurement of axial length and anterior chamber depth for intraocular lens power calculation. J. Cataract Refract. Surg. 2003; 29: 85-8.
  30. Adler G., Shahar J., Kesner R., Rosenfeld E., Fischer N., Loewenstein A., Kurtz Sh. Effect of pupil size on biometry measurements using the IOLMaster. Am. J. Ophthalmol. 2015; 159: 940-4.
  31. Mandal P., Berrow E., Naroo S. Validity and repeatability of the Aladdin ocular biometer. Br. J. Ophthalmol. 2014; 98 (2): 256-8.
  32. Стебнев С.Д., Складчикова Н.И. Эффективность использования оптического биометра “LENSTAR LS 900, Haag-Streit” в достижении “рефракции цели” при имплантации интраокулярных линз “премиум-класса” фирмы Аlcon. Современные технологии в офтальмологии. 2014; (3): 89.
  33. Verkicharla P.K., Mallen E.А., Atchison D.A. Repeatability and comparison of peripheral eye lengths with two instruments. Optom Vis Sci. 2013; 90: 215-22.
  34. Hoffer K.J., Shammas H.J., Savini J., Huang G. Multicenter study of optical low-coherence interferometry and partial-coherence interferometry optical biometers with patients from the United States and China. J. Cataract Refract Surg. 2016; 42: 62-7.
  35. Goebels S.C., Seitz B., Langenbucher A. Reproducibility of the optical biometer OA-1000 (Tomey). Biomed. Res. Int. 2014; 4: 1-6.
  36. Shammas H.J., Wetterwald, N., Potvin R. New mode for measuring axial length with an optical low-coherence reflectometer in eyes with dense cataract. J. Cataract Refract. Surg. 2015, 41: 1365-9.
  37. Измайлова С.Б., Малюгин Б.Э., Муравьев С.В., Семыкин А.Ю. Первый опыт использования системы Callisto eye в хирургии катаракты с имплантацией торической ИОЛ. Современные технологии в офтальмологии. 2014; (3): 37.
  38. Ladi J.S., Shah N.A. Comparison of central corneal thickness measurements with the GALILEI dual Scheimpflug analyzer and ultrasound pachymetry. Indian J. Ophthalmol. 2010; 58: 385-8.
  39. Karimian F., Feizi S., Doozandeh A., Faramarzi A., Yaseri M. Comparison of corneal tomography measurements using GALILEI, Orbscan II, and Placido disk-based topographer systems. J. Refract. Surg. 2011; 27: 502-8.
  40. Mauger T.F., Mahmoud A.M., Roberts C.J., Cheda L.V., et al. Comparison of placido, scheimpflug and сombined dual Scheimpflug-Placido technologies in evaluating anterior and posterior CLMI, SimK’s as well as Kmax in keratoconus and post refractive surgery ectasia. Int. J. Keratoconus ectatic. Corneal Dis. 2012; 1: 44-52.
  41. Olsen T., Hoffmann P. C constant: New concept for ray tracing-assisted intraocular lens power calculation. J. Cataract Refract. Surg. 2014; 40: 764-73.
  42. Bauer N., de Vries N., Webers C., Hendrikse F., Nuijts R. Astigmatism management in cataract surgery with the AcrySof toric intraocular lens. J. Cataract Refract. Surg. 2008; 34: 1483-8.
  43. Dardzhikova A., Shah C., Gimbel H.V. Early experience with the AcrySof toric IOL for the correction of astigmatism in cataract surgery. Can. J. Ophthalmol. 2009; 44: 269-73.
  44. Horn J.D. Status of toric intraocular lenses. Curr. Opin. Ophthalmol. 2007; 18: 58-61.
  45. Mendicute J., Iriqoyen C., Riuz M., Illarramendi I., Ferrer-Blasco T., Montes-Mico R. Foldable toric intraocular lens for astigmatism correction in cataract patients. J. Cataract Refract. Surg. 2008; 34: 601-7.
  46. Ruíz-Mesa R., Carrasco-Sánchez D., Díaz-Alvarez S.B., Ruíz-Mateos M.A., Ferrer-Blasco T., Montés-Micó R. Refractive lens exchange with foldable toric intraocular lens. Am. J. Ophthalmol. 2009, 147: 990-6.
  47. Park J.-H., Kang S.Y., Kim H.-M., Song J.-S. Differences in corneal astigmatism between partial coherence interferometry biometry and automated keratometry and relation to topographic pattern. J. Cataract Refract. Surg. 2011; 37: 1694-8.
  48. Hill W., Osher R., Cooke D., Solomon K., Sandoval H., Salas-Cervantes R., Potvin R. Simulation of toric intraocular lens results: Manual keratometry versus dual-zone automated keratometry from an integrated biometer. J. Cataract Refract. Surg. 2011; 37: 2181-7.
  49. Shammas H.J., Hoffer K.J. Repeatability and reproducibility of biometry and keratometry measurements using a noncontact optical low-coherence reflectometer and keratometer. Am. J. Ophthalmol. 2012; 153: 55-61.
  50. Abulafia A., Barrett G.D., Kleinmann G., Ofir S., Levy A., Marcovich A.L. et al. Prediction of refractive outcomes with toric intraocular lens implantation. J. Cataract Refract. Surg. 2015; 41: 936-44.
  51. Shammas H.J., Ortiz S., Shammas M.C., Kim S.H., Chong C. Biometry measurements using a new large-coherence-length swept-source optical coherence tomographer. J. Cataract Refract. Surg. 2016; 42: 50-61.
  52. Akman А., Asena L., Güngör S.G. Evaluation and comparison of the new swept source OCT-based IOL-Master 700 with the IOLMaster 500. Br. J. Ophthalmol. 2015; 41: 2224-32.
  53. Buckhurst P.J., Wolffsohn J.S., Shah S., Naroo S.A., Davies L.N., Berrow E.J. A new optical low coherence reflectometry device for ocular biometry in cataract patients. Br. J. Ophthalmol. 2009; 93: 949-53.
  54. Godefroy K., Rousseau A., Mgarrech M., Barreau E., Labetoulle M. Biometry and intraocular lens power calculation results with a new optical biometry device: Comparison with the gold standard. J. Cataract Refract. Surg. 2014; 40: 593-600.
  55. Huang J., Savini G., Li J., Lu W., Wu F., Wang J., Li Ya. et al. Evaluation of a new optical biometry device for measurements of ocular components and its comparison with IOL-Master. Br. J. Ophthalmol. 2014; 98 (9): 1277-81.
  56. Hirnschall N., Murphy S., Pimenides D., Maurino V., Findl O. Assessment of a new averaging algorithm to increase the sensi- tivity of axial eye length measurement with optical biometry in eyes with dense cataract. J. Cataract Refract. Surg. 2011; 37: 45-9.
  57. Freeman G., и Pesudovs K. The impact of cataract severity on measurement acquisition with the IOLMaster. Acta Ophthalmol. Scand. 2005; 83: 439-42.
  58. Tehrani M., Krummenauer F., Blom E., Dick H.B. Evaluation of the practicality of optical biometry and applanation ultrasound in 253 eyes. J. Cataract Refract. Surg. 2003; 29: 741-6.
  59. Rose L.T., Moshegov C.N. Comparison of the Zeiss IOLMaster and applanation A-scan ultrasound: biometry for intraocular lens calculation. Clin. Exp. Ophthalmol. 2003; 31: 121-4.

© ООО "Эко-Вектор", 2017


 


Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах