Basic Algorithm for Automatic Spelling Correction of Russian Texts: Development, Evaluation and Prospects
- 作者: Isaeva E.V.1, Safarbekov B.Z.2
-
隶属关系:
- Perm State University
- National University of Science and Technology "MISIS"
- 期: 编号 1 (68) (2025)
- 页面: 91-108
- 栏目: Computer science
- URL: https://journals.rcsi.science/1993-0550/article/view/326435
- DOI: https://doi.org/10.17072/1993-0550-2025-1-91-108
- EDN: https://elibrary.ru/ccjape
- ID: 326435
如何引用文章
全文:
详细
作者简介
E. Isaeva
Perm State University
Email: ekaterinaisae@psu.ru
Scopus 作者 ID: 57204498718
Researcher ID: O-6777-2015
Perm
B. Safarbekov
National University of Science and Technology "MISIS"
Email: behruzsafarbekov3@gmail.com
Moscow
参考
- Zukarnain N. et al. Spelling Checker Algorithm Methods for Many Languages // 2019 International Conference on Information Management and Technology (ICIMTech). IEEE, 2019. P. 198-201. doi: 10.1109/ICIMTech.2019.8843801.
- Hamrouni B.M. Logic compression of dictionaries for multilingual spelling checkers // Proceedings of the 15th conference on Computational linguistics Morristown, NJ, USA: Association for Computational Linguistics, 1994. P. 292. doi: 10.3115/991886.991936.
- Lokhande H.A. et al. Enhancing Text Quality with Bi-LSTM: An Approach for Automated Spelling and Grammar Correction // 2024 International Conference on Advances in Data Engineering and Intelligent Computing Systems (ADICS). IEEE, 2024. P. 01-07. doi: 10.1109/ADICS58448.2024.10533521.
- Mangu L., Brill E. Automatic Rule Acquisition for Spelling Correction // Proceedings of the Fourteenth International Conference on Machine Learning (ICML '97). San Francisco, CA, USA: Morgan Kaufmann Publishers Inc, 1997. P. 187-194.
- Davrondjon G., Janowski T. Developing a Spell-Checker for Tajik Using RAISE // Formal Methods and Software Engineering. ICFEM 2002. Lecture Notes in Computer Science / ed. George C., Miao H. Berlin, Heidelberg: Springer, 2002. Vol. 2495. P. 401-405. doi: 10.1007/3-540-36103-0_41 EDN: XNBRMD.
- Atawy S.M. El, ElGhany A.A. Automatic Spelling Correction based on n-Gram Model // Int J Comput Appl. 2018. Vol. 182, No 11. P. 5-9.
- Chen K.-Y., Wang H.-M., Chen H.-H. A Probabilistic Framework for Chinese Spelling Check // ACM Transactions on Asian and Low-Resource Language Information Processing. 2015. Vol. 14, No 4. P. 1-17. doi: 10.1145/2826234.
- Sasu L. A Probabilistic Model for Spelling Correction // Bulletin of the Transilvania University of Brasov. Series III: Mathematics, Informatics, Physics. 2011. Vol. 4(53), No 2. P. 141-146.
- Kashyap R.L., Oommen B.J. Spelling correction using probabilistic methods // Pattern Recognit Lett. 1984. Vol. 2, No 3. P. 147-154. doi: 10.1016/0167-8655(84)90038-2
- Chen S.F. Building Probabilistic Models for Natural Language. 1996.
- Flachs S., Lacroix O., Søgaard A. Noisy Channel for Low Resource Grammatical Error Correction // Proceedings of the Fourteenth Workshop on Innovative Use of NLP for Building Educational Applications. Stroudsburg, PA, USA: Association for Computational Linguistics, 2019. P. 191-196. doi: 10.18653/v1/W19-4420.
- Li Y., Anastasopoulos A., Black A.W. Towards Minimal Supervision BERT-Based Grammar Error Correction (Student Abstract) // Proceedings of the AAAI Conference on Artificial Intelligence. 2020. Vol. 34, No 10. P. 13859-13860. doi: 10.1609/aaai.v34i10.7202 EDN: QHFSCJ.
- Khabutdinov I.A. et al. RuGECToR: Rule-Based Neural Network Model for Russian Language Grammatical Error Correction // Programming and Computer Software. Pleiades Publishing, 2024. Vol. 50, No 4. P. 315-321. doi: 10.1134/S0361768824700129 EDN: XCUPYE.
- Martynov N. et al. A Methodology for Generative Spelling Correction via Natural Spelling Errors Emulation across Multiple Domains and Languages. 2023.
- Kaggle: Your Machine Learning and Data Science Community [Electronic resource]. URL: https://www.kaggle.com/ (accessed: 07.02.2025).
- Hugging Face - The AI community building the future. [Electronic resource]. URL: https://huggingface.co/ (accessed: 07.02.2025).
- Language-tool-python.PyPI [Electronic resource]. URL: https://pypi.org/project/language-tool-python/ (accessed: 11.12.2024).
- Hunspell download SourceForge.net [Electronic resource]. URL: https://sourceforge.net/projects/hunspell/ (accessed: 02.02.2025).
- Goslin K., Hofmann M. English Language Spelling Correction as an Information Retrieval Task Using Wikipedia Search Statistics // Proceedings of the 13th Conference on Language Resources and Evaluation (LREC 2022). Marseille: European Language Resources Association (ELRA), 2022. P. 458-464.
- SymSpell, Github [Electronic resource]. URL: https://github.com/wolfgarbe/SymSpell (accessed: 02.02.2025).
- Audah H.A., Yuliawati A., Alfina I. A Comparison Between SymSpell and a Combination of Damerau-Levenshtein Distance with the Trie Data Structure // 2023 10th International Conference on Advanced Informatics: Concept, Theory and Application (ICAICTA). IEEE, 2023. P. 1-6. doi: 10.1109/ICAICTA59291.2023.10390399.
- Проверка орфографии, грамматики и стилистики онлайн - LanguageTool [Electronic resource]. URL: https://languagetool.org/ru (accessed: 02.02.2025).
- Sorokin A.A., Shavrina T. Automatic spelling correction for Russian social media texts // Dialogue, International Conference on Computational Linguistics. Moscow: URL: https://www.researchgate.net/publication/303813582_Automatic_spelling_correction_for_Russian_social_media_texts, 2016. EDN: XMWHDK (accessed: 02.02.2025).
- Pandas 2.2.3 documentation [Electronic resource]. URL: https://pandas.pydata.org/docs/ (accessed: 02.02.2025).
补充文件
