Production Peculiarities of Hot-Curing Resin Samples for Potential Use in Open Space Conditions

Cover Page

Cite item

Full Text

Abstract

Deployable structures ensure a new round in manufacturing spacecraft components (compartments and modules, communication and power supply systems). Although there is a great number of engineering approaches and solutions in this field of research, we favor the idea of unfolding in space multi-layer inflatable structures based on a composite material (prepreg). Prepreg consists of reinforcing fibers impregnated with resin (binder) cured under open space conditions. This approach makes it possible to create light and strong structures of various shapes in space. The purpose of this study is to find a domestic material that can serve as a binder and is able to meet the requirements for binders: high curing temperature, low outgassing during curing and long storage life in an uncured state. The paper proposes to use a special resin VST-1208, which meets these requirements, for the production of prepregs. The differential scanning calorimetry method (DSC) was used to analyse the reactions occurring during resin curing. Due to the impossibility of conducting experiments in real conditions, the main step of our study is identifying an optimal strategy for production of resin samples. To this end, it is necessary to model and analyze the process of heating the samples in a vacuum thermo-cabinet. We considered the situations when the sample is in experimental conditions - in a vacuum thermo cabinet on a thermally conductive substrate, and in conditions close to outer space - in a vacuum thermo cabinet without a thermally conductive substrate (for example, on a thermally insulating substrate). Analysis of the data obtained confirmed that the considered material can be used at specified temperatures.

About the authors

K. A. Mokhireva

Institute of Continuous Media Mechanics UB RAS

Email: lyadovaka@icmm.ru
1, Akademika Koroleva St., Perm, 614013

K. Yu. Kuznetsov

Perm State University

Email: kostya.kuzneczov.2002@mail.ru
15, Bukireva St., Perm, 614990

I. V. Osorgina

Perm State University

Email: osorgina@psu.ru
15, Bukireva St., Perm, 614990

References

  1. Litteken, D. A. (2019), "Inflatable technology: using flexible materials to make large structures", Proceedings of SPIE. Electroactive Polymer Actuators and Devices (EAPAD) XXI, vol. 10966, p. 1096603. doi: 10.1117/12.2500091.
  2. Schenk, M., Viquerat, A. D., Seffen, K. and Guest, S. D. (2014), "Review of Inflatable Booms for Deployable Space Structures: Packing and Rigidization", Journal of Spacecraft and Rockets, vol. 51, no. 3, pp. 762-778. doi: 10.2514/1.A32598.
  3. Eliseeva, A. Yu., Komar, L. A. and Kondyurin, A. V. (2021), "Computational modeling of the curing of a frame of an inflatable satellite antenna in near-earth orbit", Journal of Applied Mechanics and Technical Physics, vol. 62, pp. 1234-1242. doi: 10.7242/1999-6691/2020.13.4.32 EDN: PDFKAL.
  4. Pomorceva, T. N. and Komar, L. A. (2023), "About the Possibility of Creating Large-Scale Structures in the Open Space Conditions", Bulletin of Perm University. Mathematics. Mechanics. Computer Science, no. 3(62), pp. 64-75. (In Russ.). doi: 10.17072/1993-0550-2023-3-64-75 EDN: QHASCC.
  5. Cadogan, D. P. and Scarborough, S.E. (2001), "Rigidizable materials for use in gossamer space inflatable structures", Proceedings of 19th AIAA Applied Aerodynamics Conference, Anaheim, USA, p. 2001-1417. doi: 10.2514/6.2001-1417.
  6. Liu, T.W. and Bai, J.B. (2022), "Folding behavior of a deployable composite cabin for space habitats - part 1: Experimental and numerical investigation", Composite Structures, vol. 302, p. 16244. doi: 10.1016/j.compstruct.2022.116244 EDN: SZRHUJ.
  7. Pestrenin, V. M., Pestrenina, I. V., Rusakov, S. V. and Kondyurin, A. V. (2018), "Curing of large prepreg shell in solar synchronous Low Earth Orbit: Precession flight regimes", Acta Astronautica, vol. 151, pp. 342-347. doi: 10.1016/j.actaastro.2018.06.029 EDN: YBODMD.
  8. Mukhametov, R. R., Merkulova, Yu. I., Dolgova, E. V. and Dushin, M. I. (2015), "Synthesis of heat-resistant polymer matrices via polycyclotrimerization of cyanate esters", Polymer Science. Series D, vol. 8, no. 1, pp. 22-26. doi: 10.1134/S1995421215010104 EDN: WQZZSN.
  9. Zheleznyak, V. G, Chursova, L. V., Grigor'ev, M. M. and Kosarina, E. I. (2013), "Study of an increase in shock resistance of polycyanurate with modifier based on linear heat-resistant polymers", Aviation Materials and Technologies, no. 2(27), pp. 26-28. (In Russ.). EDN: QCHAEZ.
  10. Slavin, A. V. and Startsev, O. V. (2018), "Properties of aircraft glass- and carbonfibers reinforced plastics at the early stage of natural weathering", Trudy VIAM, no. 9(69), pp. 71-82. (In Russ.). doi: 10.18577/2307-6046-2018-0-9-71-82 EDN: VAJJYG.
  11. Guseva, M. A. (2015), "Cyanic esters are prospective thermosetting binders (review)", Aviation Materials and Technologies, no. 2, pp. 45-50. (In Russ.). doi: 10.18577/2071-9140-2015-0-2-45-50 EDN: TQKEPZ.
  12. Fagalov, A. R. and Beliaev, A. Yu. (2024), "Modeling of Stationar Thermal Regime of Cylindrical Frame Element in Orbit", Bulletin of Perm University. Mathematics. Mechanics. Computer Science, no. 4(67), pp. 78-94. doi: 10.17072/1993-0550-2024-4-78-94. https://elibrary.ru/QZXOIZ (In Russ.).

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).