An Analogue of the Euler Equation and Necessary Conditions for Second-order Optimality in an Optimal Control Problem Described by Nonlinear Volterra Integral Equation

Cover Page

Cite item

Full Text

Abstract

The optimal control problem of the minimum of a multipoint functional defined on solutions of a nonlinear integral equation is considered, and implicit necessary conditions for optimality of the first and second orders are obtained. Also using them, an analogue of the Euler equation was established and constructively verifiable necessary conditions for second-order optimality were obtained. Singular optimality controls in the classical sense have been studied.

About the authors

A. A. Abdullayev

Baku State University; Institute of control system of the National academy of sciences of Azerbaijan

Email: agshin-abdullayev@mail.ru; aqshinabiloqlu@gmail.com
Baku, Azerbaijan

References

  1. Vinokurov, V. R. (1967), "Optimal control of processes described by integral equations", Izvestiya Vuzov, ser. Matematika, no. 7, pp. 21-33.
  2. Vladimirov, V. S. (1982), "Equation of mathematical physics", Nauka, Moscow, Russia, 1976, 528 p.
  3. Volterra, V. (1982), "Theory of functionals, integral and integro-differential equations", Nauka, Moscow, Russia, 304 p.
  4. Abuladze, A. A. (1988), "Optimal control problems for systems described by integral equations", Tbilisi, Izvestiya TSU, 117 p.
  5. Vasilyeva, A. B. and Tikhonov, N. A. (1989), "Integral equations", Moscow State University Press, Moscow, Russia, 156 p.
  6. Smirnov, V. I. (1974), "Course in Higher Mathematics", vol. IV, part I, Nauka, Moscow, Russia, 336 p.
  7. Mansimov, K. B., and Mustafaev, M. G. (1985), "Some necessary optimality conditions in control problems described by Volterra-type integral equations", Bulletin of the Academy of Sciences of the Azerbaijan SSR. Series of Phys.-Tech. and Mathematical Sciences, no. 5, pp. 35-41.
  8. Carlson, D. A. (1987), "An elementary proof of the maximum principle for optimal control problems governed by Volterra integral equations", Journ. of Optim. Theory and Apple. vol. 54, NL, pp. 32-45.
  9. De la Vega Constanta (2006), "Necessary conditions for optimal terminal time control problems governed by a Volterra integral equation", Journal Optimization theory and Apple, vol. 130, no. 1, pp. 79-93.
  10. Gabasov, R. and Kirillova, F.M. (2011), "Singular optimal controls", Librokom, Moscow, 259 p.
  11. Alekseev, V. M., Tikhomirov, V. M. and Fomin, S. V. (2018), "Optimal control", Fizmatlit, Moscow, 384 p.
  12. Mansimov, K.B. (1999), "Singular controls in systems with delay", Elm, Baku, 176 p.
  13. Gabasov, R. and Kirillova, F. M. (1974), "Maximum principle in the theory of optimal control", Science and Technology Publishing House, Minsk, 272 p.
  14. Mansimov, K. B. and Mardanov, M .J. (2010), "Qualitative theory of optimal control in Goursat-Darboux systems", Elm, Baku, 360 p.
  15. Mansimov, K. B. and Nagieva, I. F. (2023), "Necessary optimality conditions of the first and second orders in one optimal control problem with a non-standard quality criterion", Bulletin of Tomsk State University, [Controls, computing engineering and informatics], no. 64, pp. 11-20.
  16. Gorokhovik, S. Ya. (1975), "Necessary conditions for optimality in a problem with a moving right end of the trajectory", Differential equations, no. 10, pp. 1765-1773.
  17. Srochko, V. A. (1976), "Multipoint optimality conditions for singular controls", In the collection "Numerical methods of analysis (applied mathematics)", Siberian Branch of the USSR Academy of Sciences, Irkutsk, pp. 43-50.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).