Modeling Chandler and annual polar motion with account for lunar orbit precession
- Authors: Krylov S.S.1, Myo Z.A.1, Perepelkin V.V.1
-
Affiliations:
- Moscow Aviation Institute (National Research University)
- Issue: Vol 29, No 3 (2025)
- Pages: 591-602
- Section: Short Communications
- URL: https://journals.rcsi.science/1991-8615/article/view/349691
- DOI: https://doi.org/10.14498/vsgtu2168
- EDN: https://elibrary.ru/SPHAXK
- ID: 349691
Cite item
Full Text
Abstract
This study examines the effect of lunar orbit precession (18.6-year period) on the principal components of Earth’s polar motion—the Chandler wobble and annual wobble. We develop an enhanced polar motion model incorporating additional terms to represent long-period lunar disturbances. Numerical simulations show that accounting for these perturbations in an autonomous, uncorrected model enhances polar position determination accuracy by approximately 5 cm on average.
Full Text
##article.viewOnOriginalSite##About the authors
Sergey S. Krylov
Moscow Aviation Institute (National Research University)
Author for correspondence.
Email: compgra@yandex.ru
ORCID iD: 0000-0003-3267-6411
SPIN-code: 8634-7203
Scopus Author ID: 55453093500
https://www.mathnet.ru/rus/person232488
Cand. Phys. & Math. Sci., Associate Professor; Head of Department; Dept. of Computational Mathematics and Programming
Russian Federation, 125993, Moscow, Volokolamskoe Shosse, 4Zo Aung Myo
Moscow Aviation Institute (National Research University)
Email: myozawaung53@gmail.com
ORCID iD: 0009-0009-8557-5965
https://www.mathnet.ru/rus/person232487
Postgraduate Student
Russian Federation, 125993, Moscow, Volokolamskoe Shosse, 4Vadim V. Perepelkin
Moscow Aviation Institute (National Research University)
Email: vadim802@gmail.com
ORCID iD: 0000-0002-9061-4991
Scopus Author ID: 8263058800
ResearcherId: S-6900-2019
https://www.mathnet.ru/rus/person68736
Dr. Phys. & Math. Sci.; Professor; Dept. of Mechatronics and Theoretical Mechanics
Russian Federation, 125993, Moscow, Volokolamskoe Shosse, 4References
- IERS Conventions, IERS Technical Note; no. 36, eds. G. Petit, B. Luzum. Frankfurt am Main, Verlag des Bundesamts für Kartographie und Geodäsie, 2010, 179 pp.
- Zharov V. E. Sfericheskaya astronomiya [Spherical Astronomy]. Fryazino, Vek-2, 2006, 480 pp. (In Russian). EDN: QJRJSZ.
- Munk W. H., MacDonald G. J. F. The Rotation of the Earth. A Geophysical Discussion, Cambridge Monographs on Mechanics. Cambridge, Cambridge Univ., 2009, xix+323 pp.
- Moritz H., Müller I. I. Earth Rotation: Theory and Observation. New York, Ungar, 1987, xx+617 pp.
- Markov Yu. G., Minyaev I. S. Spatial version of the “deformable planet – satellite” problem in the field of an attracting center, Kosm. Issled., 1994, vol. 32, no. 6, pp. 89–98 (In Russian).
- Perepelkin V. V., Skorobogatykh I. V., Myu Z. A. Dynamic analysis of the steady state oscillations of the Earth’s pole, Mech. Solids, 2021, vol. 56, no. 5, pp. 727–736. EDN: MUWZNU. DOI: https://doi.org/10.3103/S0025654421050162.
- Arató M. Linear Stochastic Systems with Constant Coefficients. A Statistical Approach, Lecture Notes in Control and Information Sciences, vol. 45. Berlin, Heidelberg, New York, Springer, 1982, ix+309 pp.
- Markov Yu. G., Rykhlova L. V., Sinitsyn I. N. Some improved methods for modeling the Earth’s polar motion, Astron. Rep., 2010, vol. 54, no. 9, pp. 861–870. EDN: MXPCTX. DOI: https://doi.org/10.1134/S1063772910090106.
- Markov Yu. G., Sinitsyn I. N. Stochastic model of the motion of the deformable-earth pole, Dokl. Phys., 2002, vol. 47, no. 7, pp. 531–534. EDN: LHFMOZ. DOI: https://doi.org/10.1134/1.1499194.
- Markov Yu. G., Sinitsyn I. N. Effect of parametric dissipative fluctuation forces on the motion of the Earth’s pole, Dokl. Phys., 2004, vol. 49, no. 3, pp. 179–182. EDN: LILRBB. DOI: https://doi.org/10.1134/1.1710685.
- Markov Yu. G., Sinitsyn I. N. Nonlinear stochastic correlation models for the pole’s motion of a deformable earth, Astron. Rep., 2003, vol. 47, no. 2, pp. 161–167. EDN: KENVRX. DOI: https://doi.org/10.1134/1.1554519.
- Sidorenkov N. S. Nature of the amplitude modulation of Chandler polar motion, Izv. Gl. Astron. Observ. Pulkovo, 2013, no. 220, pp. 143–148 (In Russian).
- Sidorenkov N. S. Synchronization of atmospheric processes with frequencies of the Earth–Moon–Sun system, Processes in Geomedia, 2015, no. 3, pp. 88–99 (In Russian). EDN: VDGXWT.
- Perepelkin V. V., Soe W. Y., Rykhlova L. V. In-phase variations in the parameters of the Earth’s pole motion and the Lunar orbit precession, Astron. Rep., 2022, vol. 66, no. 1, pp. 80–91. EDN: WADBCR. DOI: https://doi.org/10.1134/S1063772922020081.
- Markov Yu. G., Perepelkin V. V., Mikhailov M. V., et al. Analysis of the effect of various disturbing factors on high-precision forecasts of spacecraft orbits, Cosmic Res., 2016, vol. 54, no. 2, pp. 155–163. EDN: WSPYJL. DOI: https://doi.org/10.1134/S0010952515060015.
- Klimov D. M., Akulenko L. D., Kumakshev S. A. The main properties and peculiarities of the Earth’s motion relative to the center of mass, Dokl. Phys., 2014, vol. 59, no. 10, pp. 472–475. EDN: UCKIOF. DOI: https://doi.org/10.1134/S1028335814100073.
- Akulenko L. D., Perepelkin A. A. Earth pole motion due to nonstacionary perturbations, Mech. Solids, 2019, vol. 54, no. 7, pp. 1108–1114. EDN: JFRNFJ. DOI: https://doi.org/10.3103/S0025654419070112.
- Akulenko L. D., Klimov D. M., Markov Yu. G., et al. Numerical-analytic modeling of perturbed oscillatory motions of the Earth pole, Mech. Solids, 2014, vol. 49, no. 6, pp. 690–702. EDN: UZXDMB. DOI: https://doi.org/10.3103/S0025654414060119.
Supplementary files






