Асимптотика сумм с гауссовым ядром и мультипликативными коэффициентами
- Авторы: Зинченко А.С.1, Романенков А.М.1
-
Учреждения:
- Московский авиационный институт (национальный исследовательский университет)
- Выпуск: Том 29, № 2 (2025)
- Страницы: 381-389
- Раздел: Краткие сообщения
- URL: https://journals.rcsi.science/1991-8615/article/view/349677
- DOI: https://doi.org/10.14498/vsgtu2113
- EDN: https://elibrary.ru/BCHVZM
- ID: 349677
Цитировать
Полный текст
Аннотация
Исследуется задача определения асимптотического поведения конечной суммы, содержащей гауссову функцию и мультипликативный сомножитель. Суммы подобного вида возникают при анализе сложности алгоритмов обхода бинарного дерева и лучевого поиска. Метод комплексного интегрирования позволяет перейти от конечной дискретной суммы к интегралу по бесконечной вертикальной прямой в одномерной комплексной плоскости. Установлено, что подынтегральная функция включает целую положительную степень дзета-функции Римана. Применение стандартной техники вычисления вычетов дает возможность получить асимптотическое значение данного интеграла.
Полный текст
Открыть статью на сайте журналаОб авторах
Александр Сергеевич Зинченко
Московский авиационный институт (национальный исследовательский университет)
Email: zinchenkoas@mai.ru
ORCID iD: 0000-0001-7971-4572
SPIN-код: 7948-5040
Scopus Author ID: 59124941500
ResearcherId: AAJ-2633-2020
https://www.mathnet.ru/rus/person229294
кандидат экономических наук; доцент; каф. 916 математики
Россия, 125993, Москва, Волоколамское шоссе, 4Александр Михайлович Романенков
Московский авиационный институт (национальный исследовательский университет)
Автор, ответственный за переписку.
Email: romanaleks@gmail.com
ORCID iD: 0000-0002-0700-8465
SPIN-код: 7586-0934
Scopus Author ID: 57196480014
ResearcherId: AAH-9530-2020
https://www.mathnet.ru/rus/person29785
кандидат технических наук, доцент; доцент; каф. 916 математики
Россия, 125993, Москва, Волоколамское шоссе, 4Список литературы
- Laurinčikas A., Šiauči¯unas D. The mean square of the Hurwitz zeta-function in short intervals // Axioms, 2024. vol. 13, no. 8, 510. DOI: https://doi.org/10.3390/axioms13080510.
- Batır N. Choi J. Parameterized finite binomial sums // Mathematics, 2024. vol. 12, no. 16, 2450. DOI: https://doi.org/10.3390/math12162450.
- Zhao J. Finite and symmetric Euler sums and finite and symmetric (alternating) multiple $T$-values // Axioms, 2024. vol. 13, no. 4, 210. DOI: https://doi.org/10.3390/axioms13040210.
- Knuth D. E. The Art of Computer Programming. vol. 3: Sorting and Searching. Bonn: Addison-Wesley, 1997. 736 pp.
- Евграфов М. А. Асимптотические оценки и целые функции. М.: Наука, 1979. 320 с.
- Чанга М. Е. Метод комплексного интегрирования / Лекц. курсы НОЦ, Т. 2. М.: МИАН, 2006. С. 3–56. EDN: TSOANP. DOI: https://doi.org/10.4213/lkn2.
- Соломинов В. М., Романенков А. М. Методы аналитической теории чисел для асимптотического анализа пузырьковой сортировки / Стратегии развития науки и образования в XXI веке. Смоленск, 2016. С. 119–128. EDN: XVXECL.
Дополнительные файлы



