Asymptotics of sums with Gaussian kernel and multiplicative coefficients

Cover Page

Cite item

Full Text

Abstract

This study deals with the asymptotic behavior of finite sums containing a Gaussian function and a multiplicative term. Such sums naturally arise in complexity analysis of binary tree traversal and ray searching algorithms. Using the method of complex integration, we transform the discrete finite sum into an integral along an infinite vertical line in the complex plane. We demonstrate that the integrand contains a positive integer power of the Riemann zeta function. By applying standard residue calculation techniques, we obtain the asymptotic value of this integral.

About the authors

Alexandr S. Zinchenko

Moscow Aviation Institute (National Research University)

Email: zinchenkoas@mai.ru
ORCID iD: 0000-0001-7971-4572
SPIN-code: 7948-5040
Scopus Author ID: 59124941500
ResearcherId: AAJ-2633-2020
https://www.mathnet.ru/rus/person229294

Cand. Econom. Sci.; Associate Professor; Dept. of Mathematics

Russian Federation, 125993, Moscow, Volokolamskoe Shosse, 4

Alexander M. Romanenkov

Moscow Aviation Institute (National Research University)

Author for correspondence.
Email: romanaleks@gmail.com
ORCID iD: 0000-0002-0700-8465
SPIN-code: 7586-0934
Scopus Author ID: 57196480014
ResearcherId: AAH-9530-2020
https://www.mathnet.ru/rus/person29785

Cand. Techn. Sci., Associate Professor; Associate Professor; Dept. of Mathematics

Russian Federation, 125993, Moscow, Volokolamskoe Shosse, 4

References

  1. Laurinčikas A., Šiauči¯unas D. The mean square of the Hurwitz zeta-function in short intervals, Axioms, 2024, vol. 13, no. 8, 510. DOI: https://doi.org/10.3390/axioms13080510.
  2. Batır N. Choi J. Parameterized finite binomial sums, Mathematics, 2024, vol. 12, no. 16, 2450. DOI: https://doi.org/10.3390/math12162450.
  3. Zhao J. Finite and symmetric Euler sums and finite and symmetric (alternating) multiple $T$-values, Axioms, 2024, vol. 13, no. 4, 210. DOI: https://doi.org/10.3390/axioms13040210.
  4. Knuth D. E. The Art of Computer Programming, vol. 3, Sorting and Searching. Bonn, Addison-Wesley, 1997, 736 pp.
  5. Evgrafov M. A. Asymptotic Estimates and Entire Functions. Mineola, NY, Dover Publ., 2020, x+181 pp.
  6. Changa M. E. Method of complex integration, Lekts. Kursy NOC, 2. Moscow, Steklov Math. Institute of RAS, 2006, pp. 3–56 (In Russian). EDN: TSOANP. DOI: https://doi.org/10.4213/lkn2.
  7. Solominov V. M., Romanenkov A. M. Methods of analytic number theory for asymptotic analysis of bubble sort, In: Development Strategies of Science and Education in the 21st Century. Smolensk, 2016, pp. 119–128 (In Russian). EDN: XVXECL.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure 1. Integration contour

Download (52KB)

Copyright (c) 2025 Authors; Samara State Technical University (Compilation, Design, and Layout)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).