The invariant of stagnation streamline for a stationary vortex flow of an ideal incompressible fluid around a body

Cover Page

Cite item

Full Text

Abstract

In this study, using the Euler equations we investigate the stagnation streamline in the general spatial case of a stationary incompressible fluid flow around a body with a smooth convex bow. It is assumed that in some neighborhood of the stagnation point everywhere, except for the stagnation point, the fluid velocity is nonzero; and that all streamlines on the surface of the body in this neighborhood start at the stagnation point. Here we prove the following three statements. 1) If on a certain segment of the vortex line the vorticity does not turn to zero, then the value of the fluid velocity in this segment is either identically equal to zero or nonzero at all points of the segment of the vortex line (velocity alternative). 2) The vorticity at the stagnation point is equal to zero. 3) On the stagnation streamline, the vorticity is collinear to the velocity, and the ratio of the vorticity to the velocity is the same at all points of the stagnation streamline (invariant of the stagnation streamline). On the basis of the obtained results, it is concluded that if in the free stream the velocity and vorticity are not collinear, a stationary flow around the body is impossible. However, the question of vorticity at the stagnation point in plane-parallel flows remains open, because the accepted assumption that the velocity of the fluid differs from zero in some neighborhood of the stagnation point everywhere, except for the stagnation point itself, excludes plane-parallel flows from consideration.

About the authors

Igor Yurievich Mironyuk

Moscow Institute of Physics and Technology (National Research University)

without scientific degree, no status

Lev Aleksandrovich Usov

Moscow Institute of Physics and Technology (National Research University)

without scientific degree, no status

References

  1. Aparinov A. A., Setukha A. V., Zhelannikov A. I., "Numerical simulation of separated flow over three-dimensional complex shape bodies with some vortex method", AIP Conf. Proc., 1629 (2014), 69
  2. Gutnikov V. A., Setukha A. V., "Solving the problems of buildings and structures aerodynamics with a vortex method", IOP Conf. Ser.: Mater. Sci. Eng., 456 (2018), 012068
  3. Shcheglov G. A., Dergachev S. A., "Vortex loops based method for subsonic aerodynamic loads calculation", MATEC Web Conf., 221 (2018), 05004
  4. Il'ichev A. T., Tomashpolskii V. Ja., "Characteristic parameters of nonlinear surface envelope waves beneath an ice cover under pre-stress", Wave Motion, 86 (2019), 11-20
  5. Ильичев А. Т., "Физические параметры уединенных волновых пакетов под ледовым покровом в бассейнах небольшой глубины", ТМФ, 201:3 (2019), 347-360
  6. Marchenko A., Markov V., Taylor R., Influence of water on collisions of floating ice blocks, ISOPE-I-19-546: The 29th International Ocean and Polar Engineering Conference, 16-21 June, Honolulu, Hawaii, USA, 2019, 8 pp.
  7. Сетуха А. В., "О лагранжевом описании трехмерных течений вязкой жидкости при больших значениях числа Рейнольдса", Ж. вычисл. матем. и матем. физ., 60:2 (2020), 297-322
  8. Голубкин В. Н., Сизых Г. Б., "Течение вязкого газа между вертикальными стенками", ПММ, 82:5 (2018), 657-667
  9. Хорин А. Н., Конюхова А. А., "Течение Куэтта горячего вязкого газа", Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 24:2 (2020), 365-378
  10. Prosviryakov E. Yu., "Exact solutions to generalized plane Beltrami–Trkal and Ballabh flows", Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 24:2 (2020), 319-330
  11. Kuzmina K., Marchevsky I., Ryatina E., "Exact solutions of boundary integral equation arising in vortex methods for incompressible flow simulation around elliptical and Zhukovsky airfoils", J. Phys.: Conf. Ser., 1348:1 (2019), 012099
  12. Сизых Г. Б., "Значение энтропии на поверхности несимметричной выпуклой головной части при сверхзвуковом обтекании", ПММ, 83:3 (2019), 377-383
  13. Лойцянский Л. Г., Механика жидкости и газа, Дрофа, М., 2003, 840 с.
  14. Понтрягин Л. С., Обыкновенные дифференциальные уравнения, Регулярная и хаотическая динамика, Ижевск, 2001, 400 с.
  15. Prim R., Truesdell C., "A derviation of Zorawski's criterion for permanent vector-lines", Proc. Amer. Math. Soc., 1:1 (1950), 32-34

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2021 Samara State Technical University

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).