On the Neuber theory of micropolar elasticity. A pseudotensor formulation

Cover Page

Cite item

Full Text

Abstract

The present paper deals with a pseudotensor formulation of the Neuber theory of micropolar elasticity. The dynamic equations of the micropolar continuum in terms of relative tensors (pseudotensors) are presented and discussed. The constitutive equations for a linear isotropic micropolar solid is given in the pseudotensor form. The final forms of the dynamic equations for the isotropic micropolar continuum in terms of displacements and microrotations are obtained in terms of relative tensors. The refinements of Neuber's dynamic equations are discussed. Those are also considered in the cylindrical coordinate net.

About the authors

Vladimir Aleksandrovich Kovalev

Moscow City Government University of Management Moscow

Email: vlad_koval@mail.ru, kovalev.kam@gmail.com
Doctor of physico-mathematical sciences, Professor

Eugenii Valeryevich Murashkin

Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences

Email: murashkin@dvo.ru, murashkin@ipmnet.ru, evmurashkin@gmail.com
Candidate of physico-mathematical sciences, no status

Yuri Nikolaevich Radayev

Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences

Email: y.radayev@gmail.com, radayev@ipmnet.ru
Doctor of physico-mathematical sciences, Professor

References

  1. Maugin G. A., Non-classical continuum mechanics, Advanced Structured Materials, 51, Springer Verlag, Singapore, 2017, xvii+259 pp.
  2. Chandrasekhar S., Liquid Crystals, Cambridge University Press, Cambridge, 1992, xvi+460 pp.
  3. Goriely A., The mathematics and mechanics of biological growth, Interdisciplinary Applied Mathematics book series, 45, Springer, New York, 2017, xxii+646 pp.
  4. Cosserat E., Cosserat F., Theorie des corps deformables, A. Hermann et fils, Paris, 1909, 126 pp.
  5. Truesdell C., Toupin R., "The Classical Field Theories", Principles of Classical Mechanics and Field Theory, Encyclopedia of Physics, v. III/1, eds. S. Flügge, Springer, Berlin, Göttingen, Heidelberg, 1960, 226-902
  6. Aero E. L., Kuvshinskii E. V., "Fundamental equations of the theory of elastic media with rotationally interacting particles", Soviet Physics-Solid State, 2:7 (1961), 1272-1281
  7. Mindlin R. D., Tiersten H. F., "Effects of couple-stresses in linear elasticity", Arch. Rational Mech. Anal., 11:1 (1962), 415-448
  8. Mindlin R. D., "Influence of couple-stresses on stress concentrations", Experimental Mechanics, 3:1 (1963), 1-7
  9. Neuber H., "Über Probleme der Spannungskonzentration im Cosserat-Körper", Acta Mechanica, 2:1 (1966), 48-69
  10. Neuber H., "On the general solution of linear-elastic problems in isotropic and anisotropic Cosserat continua", Applied Mechanics, eds. Görtler H., Springer, Berlin, Heidelberg, 1966, 153-158
  11. Neuber H., "On the Effect of Stress Concentration in Cosserat Continua", Mechanics of Generalized Continua, eds. Kröner E., Springer, Berlin, Heidelberg, 1968, 109-113
  12. Dyszlewicz J., Micropolar Theory of Elasticity, Lecture Notes in Applied and Computational Mechanics, 15, Springer, Berlin, Heidelberg, 2004, xv+345 pp.
  13. Radayev Yu. N., "The Lagrange multipliers method in covariant formulations of micropolar continuum mechanics theories", Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 22:3 (2018), 504-517 (In Russian)
  14. Nowacki W., Theory of Asymmetric Elasticity, Pergamon Press, Oxford, 1986, viii+383 pp.
  15. Veblen O., Thomas T. Y., "Extensions of Relative Tensors", Trans. Amer. Math. Soc., 26:3 (1924), 373-377
  16. Veblen O., Thomas T. Y., "The geometry of paths", Trans. Amer. Math. Soc., 25:4 (1923), 551-608
  17. Veblen O., Invariants of Quadratic Differential Forms, Cambridge University Press, Cambridge, 1927, 102 pp.
  18. Levi-Civita T., The Absolute Differential Calculus (Calculus of Tensors), Blackie & Son Limited, London, Glasgow, 1927, 450 pp.
  19. Shirokov P. A., Tensor Calculus: Tensor Algebra, ONTI GTTI, Moscow, Leningrad, 1934, 464 pp. (In Russian)
  20. Schouten J. A., Tensor Analysis for Physicist, Clarendon Press, Oxford, 1951, x+275 pp.
  21. Thomas T. Y., Concepts from Tensor Analysis and Differential Geometry, Mathematics in Science and Engineering, 1, Academic Press, London, New York, 1961, v+119 pp.
  22. Sokolnikoff I. S., Tensor Analysis: Theory and Applications to Geometry and Mechanics of Continua, John Wiley & Sons Inc, New York, 1964, xii+361 pp.
  23. Gurevich G. B., Foundations of the Theory of Algebraic Invariants, P. Noordhoff, Gröningen, 1964, viii+418 pp.
  24. Synge J. L., Schild A., Tensor Calculus, v. 5, Courier Corporation, New York, 1978, 334 pp.
  25. Das A., Tensors: The mathematics of Relativity Theory and Continuum Mechanics, Springer Science & Business Media, New York, 2007, xii+290 pp.
  26. Murashkin E. V., Radayev Yu. N., "On a micropolar theory of growing solids", Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 24:3 (2020), 424-444
  27. Rosenfeld B. A., "Multidimensional Spaces", A History of Non-Euclidean Geometry, Studies in the History of Mathematics and Physical Sciences, 12, Springer, New York, 1988, 247-279

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2021 Samara State Technical University

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).