Unsteady bending function for an unlimited anisotropic plate

Cover Page

Cite item

Full Text

Abstract

This work is devoted to the study of non-stationary vibrations of a thin anisotropic unbounded Kirchhoff plate under the influence of random non-stationary loads.

The approach to the solution is based on the principle of superposition and the method of influence functions (the so-called Green functions), the essence of which is to link the desired solution to the load using an integral operator of the type of convolution over spatial variables and over time. The convolution core is the Green function for the anisotropic plate, which represents normal displacements in response to the impact of a single concentrated load in coordinates and time, mathematically described by the Dirac delta functions. Direct and inverse integral transformations of Laplace and Fourier are used to construct the Green function. The inverse integral Laplace transform is found analytically. The inverse two-dimensional integral Fourier transform is found numerically by integrating rapidly oscillating functions. The obtained fundamental solution allowed us to present the desired non-stationary deflection in the form of a triple convolution in spatial coordinates and time of the Green function with the non-stationary load function. The rectangle method is used to calculate the convolution integral and construct the desired solution.

The found deflection function makes it possible to study the space-time propagation of non-stationary waves in an unbounded Kirchhoff plate for various versions of the symmetry of the elastic medium: anisotropic, orthotropic, transversally isotropic, and isotropic. Examples of calculations are presented.

About the authors

Alexander O. Serdiuk

Moscow Aviation Institute (National Research University)

Email: serduksaha@yandex.ru
ORCID iD: 0000-0002-2109-7900
http://www.mathnet.ru/person158166

Postgraduate Student; Dep. of Materials Resistance, Dynamics and Machine Strength

4, Volokolamskoe Shosse, Moscow, 125993, Russian Federation

Dmitry O. Serdiuk

Moscow Aviation Institute (National Research University)

Author for correspondence.
Email: d.serduk55@gmail.com
ORCID iD: 0000-0003-0082-1856
SPIN-code: 4515-5386
Scopus Author ID: 57217994555
ResearcherId: AAB-7446-2022
http://www.mathnet.ru/person128979

PhD, Cand. Techn. Sci.; Associate Professor; Dep. of Materials Resistance, Dynamics and Machine Strength

4, Volokolamskoe Shosse, Moscow, 125993, Russian Federation

Grigory V. Fedotenkov

Moscow Aviation Institute (National Research University);
Lomonosov Moscow State University, Institute of Mechanics,

Email: greghome@mail.ru
ORCID iD: 0000-0002-9556-7442
SPIN-code: 5224-5838
Scopus Author ID: 15062584600
ResearcherId: AAC-2769-2021
http://www.mathnet.ru/person100015

PhD, Cand. Phys. & Math. Sci.; Associate Professor; Dep. of Materials Resistance, Dynamics and Machine Strength1; Senior Researcher; Lab. of Dynamic Tests2

4, Volokolamskoe Shosse, Moscow, 125993, Russian Federation; 1, Michurinsky prospekt, Moscow, 119192, Russian Federation

References

  1. Gorshkov A. G., Medvedskii A. L., Rabinskii L. N., Tarlakovskii D. V. Volny v sploshnykh sredakh [Waves in Continuous Media]. Moscow, Fizmatlit, 2004, 472 pp. (In Russian)
  2. Morgachev K. S. Non-stationary dynamics of Timoshenko circular plate of variable thickness, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2007, no. 2(15), pp. 162–164 (In Russian). https://doi.org/10.14498/vsgtu548.
  3. Dyachenko Yu. G. The unsteady problem of variable section plate dynamics in a refined formulation, Thesis of Dissertation (Cand. Phys. & Math. Sci.). Saratov, Saratov State Univ., 2008, 19 pp. (In Russian)
  4. Shevchenko V. P., Vetrov S. O. The dynamics of an orthotropic plate under the action of local suddenly applied loads, Trudy Inst. Prikl. Mat. Mekh., 2011, vol. 22, pp. 207–215 (In Russian).
  5. Mikhailova E. Yu., Fedotenkov G. V. Nonstationary axisymmetric problem of the impact of a spherical shell on an elastic half-space (initial stage of interaction), Mech. Solids, 2011, vol. 46, no. 2, pp. 239–247. https://doi.org/10.3103/S0025654411020129.
  6. Tarlakovskii D. V., Fedotenkov G. V. Two-dimensional nonstationary contact of elastic cylindrical or spherical shells, J. Mach. Manuf. Reliab., 2014, vol. 43, no. 2, pp. 145–152. https://doi.org/10.3103/S1052618814010178.
  7. Tarlakovskii D. V., Fedotenkov G. V. Nonstationary 3D motion of an elastic spherical shell, Mech. Solids, 2015, vol. 50, no. 2, pp. 208–217. https://doi.org/10.3103/S0025654415020107.
  8. Vestyak A. V., Igumnov L. A., Tarlakovskii D. V., Fedotenkov G. V. The influence of non-stationary pressure on a thin spherical shell with an elastic filler, Computational Continuum Mechanics, 2016, vol. 9, no. 4, pp. 443–452 (In Russian). https://doi.org/10.7242/1999-6691/2016.9.4.37.
  9. Fedotenkov G. V., Mikhailova E. Yu., Kuznetsova E. L., Rabinskiy L. N. Modeling the unsteady contact of spherical shell made with applying the additive technologies with the perfectly rigid stamp, Int. J. Pure Appl. Math., 2016, vol. 111, no. 2, pp. 331–342. https://doi.org/10.12732/ijpam.v111i2.16.
  10. Mikhailova E. Yu., Tarlakovskii D. V., Fedotenkov G. V. Transient contact problem for spherical shell and elastic half-space, In: Shell Structures: Theory and Applications, vol. 4. London, CRC Press, 2017, pp. 301–304. https://doi.org/10.1201/9781315166605-67.
  11. Mikhailova E. Yu., Tarlakovskii D. V., Fedotenkov G. V. The impact of liquid filled concentric spherical shells with a rigid wall, In: Shell Structures: Theory and Applications, vol. 4. London, CRC Press, 2017, pp. 305–308. https://doi.org/10.1201/9781315166605-68.
  12. Mikhailova E. Yu., Tarlakovskii D. V., Fedotenkov G. V. Transient contact problem for liquid filled concentric spherical shells and a rigid barrier, In: Proceedings of the First International Conference on Theoretical, Applied and Experimental Mechanics, vol. 5. Cham, Springer, 2019, pp. 385–386. https://doi.org/10.1007/978-3-319-91989-8_92.
  13. Fedotenkov G. V., Kalinchuk V. V., Mitin A. Y. Three-Dimensional non-stationary motion of Timoshenko-type circular cylindrical shell, Lobachevskii J. Math., 2019, vol. 40, no. 3, pp. 311–320. https://doi.org/10.1134/S1995080219030107.
  14. Lokteva N. A., Serdyuk D. O., Skopintsev P. D. Unsteady dynamics of thin anisotropic elastic cylindrical shells, In: Dynamic and Technological Problems of Mechanics of Structures and Continuous Media, vol. 2. Moscow, 2020, pp. 90–91 (In Russian).
  15. Okonechnikov A. S., Tarlakovski D. V., Ul’yashina A. N., Fedotenkov G. V. Transient reaction of an elastic half-plane on a source of a concentrated boundary disturbance, IOP Conf. Ser.: Mater. Sci. Eng., 2016, vol. 158, 012073. https://doi.org/10.1088/1757-899X/158/1/012073.
  16. Okonechnikov A. S., Tarlakovsky D. V., Fedotenkov G. V. Transient interaction of rigid indenter with elastic half-plane with adhesive force, Lobachevskii J. Math., 2019, vol. 40, no. 4, pp. 489–498. https://doi.org/10.1134/S1995080219040115.
  17. Mikhailova E. Yu., Tarlakovskii D. V., Fedotenkov G. V. Uprugie plastiny i pologie obolochki [Elastic Plates and Shallow Shells]. Moscow, Moscow Aviation Inst., 2018, 92 pp. (In Russian)
  18. Tarlakovskii D. V., Fedotenkov G. V. Obshchie sootnosheniia i variatsionnye printsipy matematicheskoi teorii uprugosti [General Relations and Variational Principles of the Mathematical Theory of Elasticity]. Moscow, MAI-Print, 2009, 112 pp. (In Russian)
  19. Serdyuk A. O., Serdyuk D. O., Fedotenkov G. V. Green’s function for an unbounded thin anisotropic plate, In: Dynamic and Technological Problems of Mechanics of Structures and Continuous Media, vol. 2. Moscow, 2020, pp. 106–108 (In Russian).
  20. Serdyuk A. O., Serdyuk D. O., Fedotenkov G. V. Influence function for a plate with arbitrary material anisotropy, In: Dynamic and Technological Problems of Mechanics of Structures and Continuous Media, vol. 2. Moscow, 2020, pp. 108–110 (In Russian).
  21. Doetsch G. Introduction to the theory and application of the Laplace transformation. Berlin, Springer Verlag, 1974, vii+326 pp.
  22. Bakhvalov N. S., Zhidkov N. P., Kobel’kov G. M. Chislennye metody [Numerical Methods]. Moscow, Nauka, 1975, 630 pp. (In Russian)
  23. Ashkenazi E. K. Anizotropiia drevesiny i drevesnykh materialov [Anisotropy of Wood and Wood Materials]. Moscow, Lesn. Prom., 1978, 224 pp. (In Russian)

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2021 Authors; Samara State Technical University (Compilation, Design, and Layout)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».