Stochastic calculation of curves dynamics of enterprise
- Authors: Saraev A.L.1, Saraev L.A.1
-
Affiliations:
- Samara National Research University
- Issue: Vol 24, No 2 (2020)
- Pages: 343-364
- Section: Articles
- URL: https://journals.rcsi.science/1991-8615/article/view/41993
- DOI: https://doi.org/10.14498/vsgtu1700
- ID: 41993
Cite item
Full Text
Abstract
The article proposes mathematical models of the stochastic dynamics of the single-factor manufacturing enterprises development through internal and external investments. Balance equations for such enterprises are formulated, describing random processes of continuous increase in output and growth of production factors. The interaction of proportional, progressive and digressive depreciation with internal and external investments is investigated. Equations are obtained to determine the equilibrium state of the enterprise and the limiting values of the factors of production are calculated. The cases of the stable progressive development of the enterprise, the suspension of its work during the re-equipment of production and the temporary crisis of production shutdown during equipment replacement are considered. The algorithm for the numerical solution of stochastic differential equations of enterprise development is constructed in accordance with the Euler–Maruyama method. For each implementation of this algorithm, the corresponding stochastic trajectories are constructed for the random function of the production factor. A variant of the method for calculating the expectation of a random function of a factor of production is developed and the corresponding differential equation is obtained for it. It is shown that the numerical solution of this equation and the average value of the function of the production factor calculated from two hundred realizations of stochastic trajectories give almost identical results. Numerical analysis of the developed models showed good compliance with the known statistical data of the production enterprise.
Full Text
##article.viewOnOriginalSite##About the authors
Aleksandr Leonidovich Saraev
Samara National Research UniversityCandidate of economical sciences
Leonid Alexandrovich Saraev
Samara National Research University
Email: saraev_leo@mail.ru
Doctor of physico-mathematical sciences, Professor
References
- Колемаев В. А., Математическая экономика, М., 2005, 399 с.
- Артемьев C. C., Якунин М. А., Математическое и статистическое моделирование в финансах, ИВМиМГ СО РАН, Новосибирск, 2008, 174 с.
- Воронцовский А. В., Дикарев А. Ю., "Прогнозирование макроэкономических показателей в режиме имитации на основе стохастических моделей экономического роста", Финансы и бизнес, 2013, № 2, 33-51
- Курзенев В. А., Лычагина Е. Б., "Стохастическое моделирование динамики экономической системы", Управленческое консультирование, 2013, № 5, 78-83
- Андрианов Д. Л., Шульц Д. Н., Ощепков И. А., "Динамические стохастические модели общего экономического равновесия", Управление экономическими системами, 67:7 (2014)
- Андрианов Д. Л., Шульц Д. Н., Ощепков И. А., "Динамическая стохастическая модель общего экономического равновесия России", Вестник Нижегородского университета. Сер. Социальные науки, 2015, № 2(38), 18-25
- Андрианов Д. Л., Арбузов В. О., Ивлиев С. В., Максимов В. П., Симонов П. М., "Динамические модели экономики: теория, приложения, программная реализация", Вестник Пермского университета. Сер. Экономика, 2015, № 4, 8-32
- Itô K., McKean H. P. Jr., Diffusion processes and their sample paths, Classics in Mathematics, Springer, Berlin, xv+321 pp.
- Allen E., Modeling with Itô stochastic differential equations, Mathematical Modelling: Theory and Applications, 22, Springer, Netherlands, 2007, xii+230 pp.
- Степанов С. С., Стохастический мир, 2009
- Neisy A., Peymany M., "Financial modeling by ordinary and stochastic differential equations", World Applied Sciences Journal, 13:11 (2011), 2288-2295
- Kallianpur G., Sundar P., Stochastic analysis and diffusion processes, Oxford Graduate Texts in Mathematics, 24, Oxford University Press, Oxford, 2014, xiv+352 pp.
- Bally V., Talay D., "The law of the Euler scheme for stochastic differential equations: I. Convergence rate of the distribution function", Probab. Th. Rel. Fields, 104:1 (1996), 43-60
- Bally V., Talay D., "The law of the Euler scheme for stochastic differential equations: II. Convergence rate of the density", Monte Carlo Methods and Applications, 2:2 (1996), 93-128
- Debarant K., RöЯler A., "Classification of stochastic Runge–Kutta methods for the weak approximation of stochastic differential equations", Mathematics and Computers in Simulation, 77:4 (2008), 408-420
- Soheili A. R., Namjoo M., "Strong approximation of stochastic differential equations with Runge–Kutta methods", World Journal of Modelling and Simulation, 4:2 (2008), 83-93
- Кузнецов Д. С., Стохастические дифференциальные уравнения: теория и практика численного решения, Политехн. ун-т, Санкт-Петербург, 2007, 800 с.
- Konakov V., Menozzi S., "Weak error for stable driven stochastic differential equations: Expansion of the densities", J. Theor. Probab., 24 (2011), 454–478
- Konakov V., Menozzi S., "Weak error for the Euler scheme approximation of diffusions with non-smooth coefficients", Electron. J. Probab., 22 (2017), 46, 47 pp.
- Hottovy S., Volpe G., Wehr J., "Noise-Induced drift in stochastic differential equations with arbitrary friction and diffusion in the Smoluchowski-Kramers limit", J. Stat. Phys., 146:4 (2012), 762-773
- Frikha N., "On the weak approximation of a skew diffusion by an Euler-type scheme", Bernoulli, 24:3 (2018), 1653-1691
- Соловьев В. И., Экономико-математическое моделирование рынка программного обеспечения, Вега-Инфо, М., 2009, 176 с.
- Ильина Е. А., Сараев А. Л., Сараев Л. А., "К теории модернизации производственных предприятий, учитывающей запаздывание внутренних инвестиций", Экономика и предпринимательство, 2017, № 9-4(86), 1130-1134
- Кузнецова И. Ю., "Численное решение стохастического дифференциального уравнения методом Эйлера-Маруямы", Международный научно-исследовательский журнал, 2013, № 11-1(18), 8-11
- Бухгалтерская отчетность ПАО "Челябинский трубопрокатный завод" ИНН 7449006730 за 2017 год, https://e-ecolog.ru/buh/2017/7449006730; дата обращения: 27.02.2020
- Бухгалтерская отчетность ООО "ЛАДА Ижевский автомобильный завод" ИНН 1834051678 за 2017 год, https://e-ecolog.ru/buh/2017/1834051678; дата обращения: 27.02.2020
- Сараев А. Л., Сараев Л. А., "Показатели нелинейной динамики и предельное состояние производственного предприятия", Экономика и предпринимательство, 2018, № 11, 1237-1241
Supplementary files

