Research of a retrial queueing system with exclusion of customers and three-phase phased by follow-up

Cover Page

Cite item

Full Text

Abstract

In this paper, we consider a retrial queueing system (RQ-system) which receives to the input a Poisson flow with a given intensity. If at the time of customer the server is busy, the displacement of customer standing on the server takes place. Customers that do not have time to be successfully serviced go into orbit, in order to, after an accidental exponential delay, again turn to the server for maintenance. It is shown that the limiting characteristic function of the number of customers in the orbit and the states of the server converges to a three-dimensional Gaussian distribution. The mean vector and covariance matrix are obtained for this distribution. A stationary probability distribution of the server states is also found.

About the authors

Anatolii Andreevich Nazarov

Tomsk State University

Email: anazarov@fpmk.tsu.ru
Doctor of technical sciences, Professor

Yana Evgenevna Izmailova

Tomsk State University

Candidate of physico-mathematical sciences, no status

References

  1. Yang T., Templeton J.G.C., "A survey on retrial queue", Queueing Syst., 1987, 201–233
  2. Falin G. I., "A survey of retrial queues", Queueing Syst., 7 (1990), 127-168
  3. Falin G. I., Templeton J.G.C., Retrial Queues, Chapman and Hall, London, 1997, 338 pp.
  4. Artalejo J. R., Choudhury G., "Steady state snalysis of an M/G/1 queue with repeated attempts and two-phase service", Quality Technology and Quantitative Management, 1:2 (2004), 189-199
  5. Choudhury G., Deka K., "An M/G/1 retrial queueing system with two phases of service subject to the server breakdown and repair", Performance Evaluation, 65:10 (2008), 714-724
  6. Ke J. C., Choudhury G., "A batch arrival retrial queue with general retrial times under Bernoulli vacation schedule for unreliable server and delaying repair", Appl. Math. Model., 36:1 (2012), 255-269
  7. Kumar K., Vijayakumar A., Arivudainambi D., "An M/G/1 retrial queueing system with two-phase service and preemptive resume", Ann. Oper. Res., 113 (2002), 61-79
  8. Kuki A., Wang J., Wang F., Sztrik J., "Finite source retrial queues with two phase service", Int. J. Oper. Res., 30:4 (2017), 421-440
  9. Zhou Z., "Analysis of M1, M2/M1, M2/N retrial queue system with non-preemptive priority", 2018 IEEE 9th International Conference on Software Engineering and Service Science (ICSESS), Beijing, China, 2018, 301-304
  10. Korenevskaya M., Zayats O., Ilyashenko A., Muliukha V., "Retrial queuing system with randomized push-out mechanism and non-preemptive priority", Procedia Computer Science, 150 (2019), 716-725
  11. Senthil Kumar M., Chakravarthy S. R., Arumuganathan R., "Preemptive resume priority retrial queue with two classes of MAP arrivals", Appl. Math. Sci., 7 (2013), 2569-2589
  12. Lan S., Tang Y., "Performance analysis of a discrete-time Geo/G/1 retrial queue with non-preemptive priority, working vacations and vacation interruption", J. Ind. Manag. Optim., 15:3 (2019), 1421-1446
  13. Devos A., Walraevens J., Bruneel H., "A priority retrial queue with constant retrial policy", Y. Takahashi, T. Phung-Duc, S. Wittevrongel, W. Yue (eds.), Queueing Theory and Network Applications. QTNA 2018, Lecture Notes in Computer Science, 10932, Springer, Cham, 2018, 3-21
  14. Gao S., "A preemptive priority retrial queue with two classes of customers and general retrial times", Oper. Res. Int. J., 15 (2015), 233-251
  15. Назаров А. А., Измайлова Я. Е., "Исследование RQ-системы M|E2|1 с вытеснением заявок и сохранением фазовой реализации обслуживания", Вестн. Том. гос. ун-та. Управление, вычислительная техника и информатика, 2018, № 42, 72-78
  16. Назаров А. А., Измайлова Я. Е., "Исследование RQ-системы ||1 с -настойчивым вытеснением альтернативных заявок", Вестник СибГАУ, 17:2 (2016), 328-334
  17. Назаров A. A., Черникова Я. Е., "Исследование RQ-системы M|GI|1 с вытеснением в условии большой задержки", Известия Томского политехнического университета, 323:5 (2013), 16-20
  18. Измайлова Я. Е., Исследование математических моделей RQ-систем с вытеснением заявок, Дис. … канд. физ.-мат. наук, Томск, 2017, 148 с.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2020 Samara State Technical University

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).