On extension of the domain for analytical approximate solution of one class of nonlinear differential equations of the second order in a complex domain
- Authors: Orlov V.N.1, Leontieva T.Y.1
-
Affiliations:
- Moscow State University of Civil Engineering
- Issue: Vol 24, No 1 (2020)
- Pages: 174-186
- Section: Articles
- URL: https://journals.rcsi.science/1991-8615/article/view/41984
- DOI: https://doi.org/10.14498/vsgtu1727
- ID: 41984
Cite item
Full Text
Abstract
In previous research the authors have implemented the investigation of one class of nonlinear differential equations of the second order in the neighborhood of variable exceptional point. The authors have proven the following: the existence of variable exceptional point, theorem of the existence and uniqueness of solution in the neighborhood of variable exceptional point. The analytical approximated solution in the neighborhood of variable exceptional point was built. The authors researched the influence of disturbance of variable exceptional point on an approximated solution. The results obtained for the real domain have been extended to the complex domain $|z|<|\tilde z^*|\leqslant |z^*|$, where $z^*$ is precise value of variable exceptional point, $\tilde z^*$ is approximate value of variable exceptional point. In the present paper, the authors have carried out the investigation of analytical approximate solution of the influence of disturbance of variable exceptional point in the domain $|z|>|\tilde z^*|\geqslant |z^*|$, giving special attention to change of direction of movement along the beam towards the origin of coordinates of a complex domain. These researches are actual due to the variable exceptional point pattern (even fractional degree of critical pole). The received results are accompanied by the numerical experiment and complete the investigation of analytical approximated solution of the considered class of nonlinear differential equations in the neighborhood of variable exceptional point depending on the direction of movement along the beam in a complex domain.
Full Text
##article.viewOnOriginalSite##About the authors
Victor Nikolaevich Orlov
Moscow State University of Civil EngineeringDoctor of physico-mathematical sciences, Associate professor
Tatyana Yuryevna Leontieva
References
- Hill J. M., "Radial deflections of thin precompressed cylindrical rubber bush mountings", Int. J. Solids Struct., 20:13 (1977), 93-104
- Ockendon J. R., "Numerical and analytical solutions of moving boundary problems", Moving Boundary Problems, eds. D. G. Wilson, A. D. Solomon and P. T. Boggs, Academic Press, New York, 1978, 129-145
- Axford R., Differential equations invariant urber two-parameter Lie groups with applications to non-linear diffusion, Los Alamos Technical Reports, Rept. no. LA-4517, 1970, 39 pp.
- Kalman R. E., Bucy R. S., "New results in linear filtering and prediction theory", J. Basic Eng., 83:1 (1961), 95-108
- Shi M., "On the solution of a one-dimensional Riccati equation related to risk-sencitive portfolio optimization problem", Rep. Fac. Sci. Engrg. Saga. Univ. Math., 34:1 (2005), 17-24
- Orlov V. N., Kovalchuk O. A., "Mathematical problems of reliability assurance the building constructions", E3S Web Conf., 97 (2019), 03031
- Orlov V. N., "Features of mathematical modelling in the analysis of console-type structures", E3S Web Conf., 97 (2019), 03036
- Голубев В. В., Лекции по аналитической теории дифференциальных уравнений, ГИТЛ, М.-Л., 1950, 436 с.
- Орлов В. Н., "О приближенном решении первого уравнения Пенлеве", Вестник КГТУ им. А. Н. Туполева, 2008, № 2, 42–46
- Орлов В. Н., "Исследование приближенного решения дифференциального уравнения Абеля в окрестности подвижной особой точки", Вестник МГТУ им. Н. Э. Баумана. Сер. Естественные науки, 2009, № 4(35), 102–108
- Орлов В. Н., "Об одном методе приближенного решения матричных дифференциальных уравнений Риккати", Вестник МАИ, 15:5 (2008), 128–135
- Orlov V. N., Kovalchuk O. A., "Mathematical modeling of complex structures and nonlinear differential equations with movable points", IOP Conf. Ser.: Mater. Sci. Eng., 456 (2018), 012122
- Орлов В. Н., Ковальчук О. А., Линник Е. П., Линник И. И., "Исследование одного класса нелинейного дифференциального уравнения третьего порядка в области аналитичности", Вестник МГТУ им. Н. Э. Баумана. Сер. Естественные науки, 2018, № 4(79), 24–35
- Орлов В. Н., Леонтьева Т. Ю., "Построение приближенного решения одного нелинейного дифференциального уравнения второго порядка в окрестности подвижной особой точки в комплексной области", Вестник ЧГПУ им. И. Я. Яковлева. Сер. Механика предельного состояния, 2014, № 4(22), 157–166
Supplementary files

