Quantum evolution as a usual mechanical motion of peculiar continua

Cover Page

Cite item

Full Text

Abstract

Quantum particles are considered as continuous media having peculiar properties. These properties are formulated so that all main quantum mechanics postulates can be strictly derived from them. A deterministic description of the process of position measurement is presented. The mechanism of occurrence of randomness in the measurement process is shown and the Born rule is derived. A realistic interpretation of the wave function as a component of a peculiar variable force acting on the apparatus is introduced, and the wave equation is derived from the continuity equation of the peculiar continuum. The deterministic view on the phenomena of the microcosm allows us to eliminate the limitations caused by the uncertainty principle and to describe dynamically those processes that cannot be considered using conventional quantum mechanics.

About the authors

Alexey Yur'evich Samarin

Samara State Technical University

Email: samarin.ay@samgtu.com
Candidate of physico-mathematical sciences, Associate professor

References

  1. Einstein A., Podolsky B., Rosen N., "Can quantum mechanics description of physical reality be considered complete?", Phys. Rev., 47:10 (1935), 777-780
  2. Schrödinger E., "Der stetige Übergang von der Mikro- zur Makromechanik", Naturwissenschaften, 14:28 (1926), 664-666
  3. Bell J. S., "Against 'measurement'", Speakable and Unspeakable in Quantum Mechanics: Collected Papers on Quantum Philosophy, Oxford Univ. Press, Oxford, 2004, 213-231
  4. Maudlin T., "What Bell did", J. Phys. A: Math. Theor., 47:42 (2014), 424010
  5. Samarin A. Yu., "Quantum particle motion in physical space", Adv. Studies Theor. Phys., 8:1 (2014), 27-34
  6. Samarin A. Yu., "Nonlinear dynamics of open quantum systems", Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 22:2 (2018), 214-224
  7. von Neumann J., Mathematische Grundlagen der Quantenmechanik, Grundlehren der mathematischen Wissenschaften, 38, Springer, Berlin, Heidelberg, New York, 1996, ix+262 pp.
  8. Landau L. D., Lifshitz E. M., Mechanics, v. 1, Course of Theoretical Physics, Pergamon Press, Oxford, 1969, vii+165 pp.
  9. Feynman R. P., "Space-time approach to non-relativistic quantum mechanics", Rev. Mod. Phys., 20:2 (1948), 367-387
  10. Feynman R. P., Hibbs A. R., Quantum Mechanics and Path Integrals, McGraw-Hill, New York, 1965
  11. Kac M., Probability and related topics in physical sciences, Lectures in Applied Mathematics. Proceedings of the Summer Seminar (Boulder, Colo., 1957), 1, Interscience Publ., Lonodon, New York, 1959, xiii+266 pp.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2020 Samara State Technical University

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).