Quantum evolution as a usual mechanical motion of peculiar continua
- Authors: Samarin A.Y.1
-
Affiliations:
- Samara State Technical University
- Issue: Vol 24, No 1 (2020)
- Pages: 7-21
- Section: Articles
- URL: https://journals.rcsi.science/1991-8615/article/view/41975
- DOI: https://doi.org/10.14498/vsgtu1724
- ID: 41975
Cite item
Full Text
Abstract
Quantum particles are considered as continuous media having peculiar properties. These properties are formulated so that all main quantum mechanics postulates can be strictly derived from them. A deterministic description of the process of position measurement is presented. The mechanism of occurrence of randomness in the measurement process is shown and the Born rule is derived. A realistic interpretation of the wave function as a component of a peculiar variable force acting on the apparatus is introduced, and the wave equation is derived from the continuity equation of the peculiar continuum. The deterministic view on the phenomena of the microcosm allows us to eliminate the limitations caused by the uncertainty principle and to describe dynamically those processes that cannot be considered using conventional quantum mechanics.
Full Text
##article.viewOnOriginalSite##About the authors
Alexey Yur'evich Samarin
Samara State Technical University
Email: samarin.ay@samgtu.com
Candidate of physico-mathematical sciences, Associate professor
References
- Einstein A., Podolsky B., Rosen N., "Can quantum mechanics description of physical reality be considered complete?", Phys. Rev., 47:10 (1935), 777-780
- Schrödinger E., "Der stetige Übergang von der Mikro- zur Makromechanik", Naturwissenschaften, 14:28 (1926), 664-666
- Bell J. S., "Against 'measurement'", Speakable and Unspeakable in Quantum Mechanics: Collected Papers on Quantum Philosophy, Oxford Univ. Press, Oxford, 2004, 213-231
- Maudlin T., "What Bell did", J. Phys. A: Math. Theor., 47:42 (2014), 424010
- Samarin A. Yu., "Quantum particle motion in physical space", Adv. Studies Theor. Phys., 8:1 (2014), 27-34
- Samarin A. Yu., "Nonlinear dynamics of open quantum systems", Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 22:2 (2018), 214-224
- von Neumann J., Mathematische Grundlagen der Quantenmechanik, Grundlehren der mathematischen Wissenschaften, 38, Springer, Berlin, Heidelberg, New York, 1996, ix+262 pp.
- Landau L. D., Lifshitz E. M., Mechanics, v. 1, Course of Theoretical Physics, Pergamon Press, Oxford, 1969, vii+165 pp.
- Feynman R. P., "Space-time approach to non-relativistic quantum mechanics", Rev. Mod. Phys., 20:2 (1948), 367-387
- Feynman R. P., Hibbs A. R., Quantum Mechanics and Path Integrals, McGraw-Hill, New York, 1965
- Kac M., Probability and related topics in physical sciences, Lectures in Applied Mathematics. Proceedings of the Summer Seminar (Boulder, Colo., 1957), 1, Interscience Publ., Lonodon, New York, 1959, xiii+266 pp.
Supplementary files

