Modeling of gas oscillations in a methane pyrolysis reactor using a locally non-equilibrium Navier–Stokes equation

Cover Page

Cite item

Full Text

Abstract

A locally non-equilibrium Navier–Stokes equation, which accounts for the mean free path and relaxation time of microparticles, has been derived based on a modified Newton's law for shear stress in laminar gas flow within a plane-parallel channel. A numerical study of its solution for the case of a harmonic pressure drop along the channel revealed that the velocity variation at every point also exhibits harmonic behavior. It was found that the velocity oscillation amplitude decreases with an increase in the mean free path and relaxation time of the microparticles. For fixed microparticle parameters, the oscillation amplitude decreases with increasing gas viscosity and decreasing channel width. In the limiting case where the channel width becomes comparable to the mean free path, the velocity oscillation amplitude reaches an almost zero value, despite the constant amplitude of the pressure drop oscillations. It is demonstrated that the generation of gas flow oscillations can be utilized to clean the internal surfaces of a methane pyrolysis reactor from carbon deposits, which reduce the efficiency of the process for producing hydrogen and carbon.

About the authors

Yuriy A. Kryukov

Samara State Technical University

Email: yurakryukov1985@mail.ru
ORCID iD: 0000-0002-8505-132X
https://www.mathnet.ru/rus/person115309

Cand. Techn. Sci.; Engineer; Dept. of Physics

Russian Federation, 443100, Samara, Molodogvardeyskaya st., 244

Sergey V. Zaitsev

Samara State Technical University

Email: mr.zaitzev@mail.ru
ORCID iD: 0009-0000-4380-1201
SPIN-code: 1589-9724
Scopus Author ID: 59306743600
ResearcherId: LRV-2214-2024
https://www.mathnet.ru/rus/person202964

Postgraduate Student; Junior Researcher; Dept. of Physics

Russian Federation, 443100, Samara, Molodogvardeyskaya st., 244

Igor V. Kudinov

Samara State Technical University

Author for correspondence.
Email: igor-kudinov@bk.ru
ORCID iD: 0000-0002-9422-0367
SPIN-code: 4122-0072
Scopus Author ID: 35169937500
https://www.mathnet.ru/rus/person44183

Dr. Techn. Sci., Professor; Head of Department; Dept. of Physics

Russian Federation, 443100, Samara, Molodogvardeyskaya st., 244

Timur F. Amirov

Samara State Technical University

Email: tim_amiroff@mail.ru
ORCID iD: 0009-0008-6492-5164
SPIN-code: 4663-5983
https://www.mathnet.ru/rus/person213825

Postgraduate Student; Junior Researcher; Dept. of Physics

Russian Federation, 443100, Samara, Molodogvardeyskaya st., 244

Maksim V. Nenashev

Samara State Technical University

Email: nenashev.mv@samgtu.ru
ORCID iD: 0000-0003-3918-5340
Scopus Author ID: 56462953900
https://www.mathnet.ru/rus/person38904

Dr. Techn. Sci., Professor; Professor; Dept. of Solid Chemical Substance Technology

Russian Federation, 443100, Samara, Molodogvardeyskaya st., 244

References

  1. Qian J. X., Chen T. W., Liu D. B., et al. Methane decomposition to pure hydrogen and carbon nano materials: State-of-the-art and future perspectives, Int. J. Hydrogen Energy, 2020, vol. 45, no. 32, pp. 15721–15743. EDN: RKYKBH. DOI: https://doi.org/10.1016/j.ijhydene.2020.04.100.
  2. Fan Z., Weng W., Xiao W., et al. Catalytic decomposition of methane to produce hydrogen: A review, J. Energy Chem., 2021, vol. 58, pp. 415–430. EDN: XBSQTH. DOI: https://doi.org/10.1016/j.jechem.2020.10.049.
  3. Pleshivtseva Yu., Derevyanov M., Pimenov A., Rapoport A. Comprehensive review of low carbon hydrogen projects towards the decarbonization pathway, Int. J. Hydrogen Energy, 2022, vol. 48, no. 10, pp. 3703–3724. EDN: WUWCKU. DOI: https://doi.org/10.1016/j.ijhydene.2022.10.209.
  4. Pleshivtseva Yu., Derevyanov M., Pimenov A., Rapoport A. Comparative analysis of global trends in low carbon hydrogen production towards the decarbonization pathway, Int. J. Hydrogen Energy, 2023, vol. 48, no. 83, pp. 32191–32240. EDN: RNZICP. DOI: https://doi.org/10.1016/j.ijhydene.2023.04.264.
  5. Kudinov I. V., Kosareva E. A., Dolgikh V. D., et al. Hydrogen production by thermocatalytic decomposition of methane: Modern achievements (A review), Pet. Chem., 2025, vol. 65, no. 1, pp. 10–34. EDN: GXENHA. DOI: https://doi.org/10.1134/S0965544124080176.
  6. Kudinov I. V., Pimenov A. A., Kryukov Y. A., Mikheeva G. V. A theoretical and experimental study on hydrodynamics, heat exchange and diffusion during methane pyrolysis in a layer of molten tin, Int. J. Hydrogen Energy, 2021, vol. 46, no. 17, pp. 10183–10190. DOI: https://doi.org/10.1016/j.ijhydene.2020.12.138.
  7. Leal Pérez B., Medrano Jiménez J.A., Van Sint Annaland M., et al. Methane pyrolysis in a molten gallium bubble column reactor for sustainable hydrogen production: Proof of concept & techno-economic assessment, Int. J. Hydrogen Energy, 2021, vol. 46, no. 7, pp. 4917–4935. EDN: OXOXLU. DOI: https://doi.org/10.1016/j.ijhydene.2020.11.079.
  8. Sánchez-Bastardo N., Schlögl R., Ruland H. Methane pyrolysis for CO2-free H2 production: A green process to overcome renewable energies unsteadiness, Chem. Ing. Tech, 2020, vol. 92, no. 10, pp. 1596–1609. EDN: SPEEXP. DOI: https://doi.org/10.1002/cite.202000029.
  9. Karimi S., Bibak F., Meshkani F., et al. Promotional roles of second metals in catalyzing methane decomposition over the Ni-based catalysts for hydrogen production: A critical review, Int. J. Hydrogen Energy, 2021, vol. 46, no. 39, pp. 20435–20480. EDN: JHDYAL. DOI: https://doi.org/10.1016/j.ijhydene.2021.03.160.
  10. Petukhov B. S. Teploobmen i soprotivlenie pri laminarnom techenii zhidkosti v trubakh [Heat Transfer and Resistance in Laminar Flow of Fluid in Tubes]. Moscow, Energiya, 1967, 412 pp. (In Russian)
  11. Schlichting H., Gersten K. Boundary-Layer Theory. Berlin, Springer, 2017, xxviii+805 pp. DOI: https://doi.org/10.1007/978-3-662-52919-5.
  12. Bogomolov A. I., Mikhailov K. A. Gidravlika [Hydraulics]. Moscow, Stroiizdat, 1972, 648 pp. (In Russian)
  13. Luikov A. V. Application of the methods of thermodynamics of irreversible processes to the investigation of heat and mass transfer, J. Eng. Phys., 1965, vol. 9, no. 3, pp. 189–202. EDN: XKFUAL. DOI: https://doi.org/10.1007/BF00828333.
  14. Lykov A. V. Teoriya teploprovodnosti [Theory of Heat Conduction]. Moscow, Gostekhizdat, 1952, 392 pp. (In Russian)
  15. Sobolev S.L. Local non-equilibrium transport models, Phys. Usp., 1997, vol. 40, no. 10, pp. 1043–1053. EDN: LEIDXZ. DOI: https://doi.org/10.1070/PU1997v040n10ABEH000292.
  16. Majchrzak E., Mochnacki B. Dual-phase lag model of thermal processes in a multi-layered microdomain subjected to a strong laser pulse using the implicit scheme of FDM, Int. J. Therm. Sci., 2018, vol. 133, pp. 240–251. EDN: YJLTQT. DOI: https://doi.org/10.1016/j.ijthermalsci.2018.07.030.
  17. Kudinov I. V., Kudinov V. A., Gavrilova T. Y. Mathematical modelling of thermal dynamic stresses on the basis of a dual – Phase lag model, Int. J. Heat Mass Transf., 2019, vol. 138, pp. 326–334. EDN: EXJEGE. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2019.04.011.
  18. Kudinov I. V. Development of mathematical models and research strongly nonequilibrium developments taking into account space-time nonlocality, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2018, vol. 22, no. 1, pp. 116–152 (In Russian). EDN: UTXSMC. DOI: https://doi.org/10.14498/vsgtu1566.
  19. Khakimzyanov G. S., Cherny S. G. Metody vychislenii [Computational Methods], vol. 4, Chislennye metody resheniya zadach dlya uravneniy giperbolicheskogo tipa [Numerical Methods for Solving Hyperbolic Type Equations]. Novosibirsk, Novosibirsk State Univ., 2014, 207 pp. (In Russian)
  20. Samarskii A. A., Nikolaev E. S. Metody resheniya setochnykh uravnenii [Methods for the Solution of Difference Equations]. Moscow, Nauka, 1978, 591 pp. (In Russian)
  21. Kudinov I. V., Trubitsyn K. V., Eremin A. V., Dolgikh V. D. Mathematical modeling of gas oscillations in a methane pyrolysis reactor, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2024, vol. 28, no. 4, pp. 773–789 (In Russian). EDN: SRKXEK. DOI: https://doi.org/10.14498/vsgtu2115.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure 1. Uniform finite difference mesh

Download (51KB)
3. Figure 2. Velocity distribution across the channel width at different time instants for $ A_1 = 0.42 $, $ F = A_2 = 0 $, $ {\sf Zh} \geqslant 3.0 $; dots represent the analytical solution according to (31)

Download (243KB)
4. Figure 3. Velocity distribution at points $\eta = 0$ (curve 1), $\eta = 0.2$ (curve 2), $\eta = 0.4$ (curve 3), $\eta = 0.6$ (curve 4), $\eta = 0.8$ (curve 5) across the channel width over time for $F = 0$, $A_1 = 0.42$, $A_2 = 10$

Download (204KB)
5. Figure 4. Velocity distribution at points $\eta = 0$ (curve 1), $\eta = 0.2$ (curve 2), $\eta = 0.4$ (curve 3), $\eta = 0.6$ (curve 4), $\eta = 0.8$ (curve 5) across the channel width over time for $F = 10$, $A_1 = 0.42$, $A_2 = 10 $

Download (163KB)
6. Figure 5. Velocity distribution at points $\eta = 0$ (curve 1), $\eta = 0.2$ (curve 2), $\eta = 0.4$ (curve 3), $\eta = 0.6$ (curve 4), $\eta = 0.8$ (curve 5) across the channel width over time for $F = 50$, $A_1 = 0.42$, $A_2 = 10 $

Download (95KB)

Copyright (c) 2025 Authors; Samara State Technical University (Compilation, Design, and Layout)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).