Mathematical model of creep and creep rupture strength for hydrogen-charged VT6 titanium alloy at a temperature of 600$^\circ$C

Cover Page

Cite item

Full Text

Abstract

A mathematical model is proposed for predicting the creep and creep rupture strength of the hydrogen-charged VT6 titanium alloy at a temperature of 600$^\circ$C. A method for identifying the model parameters has been developed based on data from steady-state creep curves at fixed stress levels and hydrogen concentrations. Creep curves and time to rupture have been calculated for the VT6 alloy at $T=600$$^\circ$C. The adequacy of the model was verified by comparison with experimental data as well as with the results of independent calculations using alternative models. It is shown that the model provides satisfactory prediction accuracy even with significant inherent scatter in the experimental data. Based on the analysis of the identified model parameters, the influence of hydrogen concentration on the rheological properties and fracture mechanism of the material has been investigated, revealing partial embrittlement and a substantial change in nonlinearity indices.

About the authors

Vladimir P. Radchenko

Samara State Technical University

Email: radchenko.vp@samgtu.ru
ORCID iD: 0000-0003-4168-9660
Scopus Author ID: 7004402189
ResearcherId: J-5229-2013
https://www.mathnet.ru/rus/person38375

Dr. Phys. & Math. Sci., Professor; Head of Dept; Dept. of Applied Mathematics & Computer Science

Russian Federation, 443100, Samara, Molodogvardeyskaya st., 244

Elena A. Afanaseva

Samara State Technical University

Author for correspondence.
Email: afanasieva.ea@samgtu.ru
ORCID iD: 0000-0001-7815-2723
SPIN-code: 7548-9837
https://www.mathnet.ru/rus/person188683

Cand. Phys. & Math. Sci.; Junior Researcher; Dept. of Applied Mathematics & Computer Science

Russian Federation, 443100, Samara, Molodogvardeyskaya st., 244

Mikhail N. Saushkin

Samara State Technical University

Email: saushkin.mn@samgtu.ru
ORCID iD: 0000-0002-8260-2069
Scopus Author ID: 35318659800
ResearcherId: A-8120-2015
https://www.mathnet.ru/rus/person38368

Cand. Phys. & Math. Sci.; Associate Professor; Dept. of Applied Mathematics & Computer Science

Russian Federation, 443100, Samara, Molodogvardeyskaya st., 244

References

  1. Lokoshchenko A. M., Il’in A. A., Mamonov A. M., Nazarov V. V. Experimental and theoretical study of the effect of hydrogen on the creep and long-term strength of VT6 titanium alloy, Russ. Metall., 2008, vol. 2008, no. 2, pp. 142–147. EDN: LLNZQN. DOI: https://doi.org/10.1134/S0036029508020109.
  2. Lokoshchenko A. M., Nazarov V. V., Novotnyi S. V., Kovalkov V. K. Experimental study of creep and long-term strength of titanium alloy VT6 at a temperature of 600∘C, Vestn. Dvigatelestr., 2006, no. 3, pp. 56–59 (In Russian).
  3. Igumnov L. A., Kazakov D. A., Shishulin D. N., et al. Experimental studies of high-temperature creep of titanium alloy VT6 under conditions of a complex stress state under the influence of an aggressive medium, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2021, vol. 25, no. 2, pp. 286–302 (In Russian). EDN: FNTAVO. DOI: https://doi.org/10.14498/vsgtu1850.
  4. Igumnov L. A., Volkov I. A., Kazakov D. A., et al. Numerical simulation of the creep process of titanium alloy VT6 under a multi-axis stress state taking into account the influence of an aggressive environment, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2021, vol. 25, no. 3, pp. 435–456 (In Russian). EDN: EIPPKA. DOI: https://doi.org/10.14498/vsgtu1873.
  5. Lokoshchenko A. M. Creep and Long-Term Strength of Metals. Boca, Raton, CRC Press, 2018, xviii+545 pp.. EDN: YKQNZJ. DOI: https://doi.org/10.1201/b22242.
  6. Nosov V. K., Kalachev B. A. Vodorodnoe plastifitsirovanie pri goryachei deformatsii titanovykh splavov [Hydrogen Plastification During Hot Deformation of Titanium Alloys]. Moscow, Metallurgiya, 1986, 118 pp. (In Russian)
  7. Ilin A. A., Kalachev B.A., Nosov V. K., Mamonov A. M. Vodorodnaya tekhnologiya titanovykh splavov [Hydrogen Technology of Titanium Alloys]. Moscow, MISIS, 2002, 392 pp. (In Russian)
  8. Zwicker U. Titan und Titanlegierungen. Berlin, Springer, 1974, 717 pp. (In German). DOI: https://doi.org/10.1007/978-3-642-80587-5.
  9. Zwicker U. Titan i ego splavy [Titanium and Its Alloys]. Moscow, Metallurgiya, 1979, 512 pp. (In Russian)
  10. Lokoschenko A. M., Fomin L. V., Tretyakov P. M., Makhov D. D. Creep and longterm strength of hydrogen-containing VT6 titanium alloy with a piecewise constant dependence of tensile stress on time, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2023, vol. 27, no. 1, pp. 179–188 (In Russian). EDN: NCUTFK. DOI: https://doi.org/10.14498/vsgtu1971.
  11. Lokoschenko A. M., Fomin L. V., larin N. S. Creep rupture strength of rods stretched in an aggressive medium with various two-connected forms of their cross-sections, Mech. Solids, 2021, vol. 56, no. 7, pp. 1277–1294. EDN: GGQXPT. DOI: https://doi.org/10.3103/S0025654421070177.
  12. Basalov Y. G., Lokoshchenko A. M., Fomin L. V. Creep and long-term destruction of a cylindrical shell in a non-stationary complex stress state in the presence of an aggressive environment, Mech. Solids, 2021, vol. 56, no. 4, pp. 523–533. EDN: UQMUCY. DOI: https://doi.org/10.3103/S002565442104004X.
  13. Larin N. S., Lokoshchenko A. M., Fomin L. V. Dependence of creep-rupture lifetime for rods under tension in an aggressive environment on the shape of a single-cell cross-section, Mech. Solids, 2019, vol. 54, no. 7, pp. 1042–1050. EDN: YTDVPN. DOI: https://doi.org/10.3103/S0025654419070057.
  14. Fomin L. V., Basalov Y. G. Long-term fracture of a composite rod under tension in creep conditions in the presence of an active medium, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2024, vol. 28, no. 2, pp. 390–400 (In Russian). EDN: WXJJNS. DOI: https://doi.org/10.14498/vsgtu2018.
  15. Radchenko V. P., Afanaseva E. A., Saushkin M. N. Predicting high-temperature rheological deformation and long-term strength of a viscoplastic material using a leader sample, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2023, vol. 27, no. 2, pp. 292–308 (In Russian). EDN: EPOTNP. DOI: https://doi.org/10.14498/vsgtu2001.
  16. Radchenko V. P., Afanaseva E. A., Saushkin M. N. Using a leader sample to predict the creep and long-term strength of a material during ductile fracture, J. Appl. Mech. Tech. Phys., 2024, vol. 64, no. 6, pp. 1119–1127. EDN: TEIHNL. DOI: https://doi.org/10.1134/s0021894423060238.
  17. Lundin C. D., Aronson A. H., Jackman L. A., Clough W. R. Very-short-time, very-high-temperature creep rupture of type 347 stainless steel and correlation of data, J. Basic Eng., 1969, vol. 91, no. 1, pp. 32–38. DOI: https://doi.org/10.1115/1.3571023.
  18. Hoff N. J. The necking and the rupture of rods subjected to constant tensile loads, J. Appl. Mech., 1953, vol. 20, no. 1, pp. 105–108. DOI: https://doi.org/10.1115/1.4010601.
  19. Mozharovskaya T. N. Relationship of the time until failure in long-term loading under conditions of the plane stressed state to the minimum rate of creep deformations, Strength Mater., 1982, vol. 14, no. 12, pp. 1635–1639. EDN: XLUTEH. DOI: https://doi.org/10.1007/BF00768650.
  20. Mozharovskaya T. N., Mozharovskii V. N., Shtefan N. I. Dependence between the time to fracture and the steady-state creep strain rate of structural materials, Visnik NTUU KPI. Ser. Mashobuduvannya, 2010, vol. 59, pp. 37–40 (In Russian).
  21. Radchenko V. P., Afanaseva E. A., Saushkin M. N. Prediction of creep and long-term strength for hydrogen-charged VT6 Titanium alloy using a leader specimen, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2025, vol. 29, no. 3, pp. 579–590 (In Russian). EDN: VDHDWM. DOI: https://doi.org/10.14498/vsgtu2202.
  22. Nazarov V. V. Experimental-Theoretical Study of Creep and Long-Term Strength of Metals under Uniaxial and Complex Stress States, Cand. Sci. Dissertation in Phys. and Math. Moscow, Moscow State Industrial Univ., 2008, 130 pp. (In Russian)
  23. Samarin Yu. P. Uravneniya sostoyaniya materialov so slozhnymi reologicheskimi svoistvami [Equations of State for Materials with Complex Rheological Properties]. Kuybyshev, Kuybyshev State Univ., 1979, 84 pp. (In Russian)

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure 1. Creep curves for the VT6 alloy ($T = 600$$^\circ$C, $c_m = 0$ wt.%): experimental (solid lines), initial calculation using model (7) (dashed lines), and final calculation using the full model (1)–(8) (dash-dotted lines). Curves: 1—$\sigma = 217$ MPa, 2—$\sigma = 167$ MPa, 3—$\sigma = 117$ MPa, 4—$\sigma = 67$ MPa, 5—$\sigma = 47$ MPa (color online)

Download (210KB)
3. Figure 2. Creep curves for the VT6 alloy ($T = 600$$^\circ$C, $c_m = 0.1$ wt.%): experimental (solid lines), initial calculation using model (7) (dashed lines), and final calculation using the full model (1)–(8) (dash-dotted lines). Curve labels correspond to those in Fig. 1 (color online)

Download (234KB)
4. Figure 3. Creep curves for the VT6 alloy ($T = 600$$^\circ$C, $c_m = 0.2$ wt.%): experimental (solid lines), initial calculation using model (7) (dashed lines), and final calculation using the full model (1)–(8) (dash-dotted lines). Curve labels correspond to those in Fig. 1 (color online)

Download (216KB)
5. Figure 4. Creep curves for the VT6 alloy ($T = 600$$^\circ$C, $c_m = 0.3$ wt.%): experimental (solid lines), initial calculation using model (7) (dashed lines), and final calculation using the full model (1)–(8) (dash-dotted lines). Curve labels correspond to those in Fig. 1 (color online)

Download (95KB)

Copyright (c) 2025 Authors; Samara State Technical University (Compilation, Design, and Layout)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).