On the uniqueness of solutions to initial-boundary value problems for high-order linear pseudohyperbolic equations

Cover Page

Cite item

Full Text

Abstract

This study investigates the uniqueness of solutions to initial-boundary value problems representing a generalized mathematical model of oscillations in elastic structures (strings, rods, and various types of beams). These processes are described by hyperbolic and pseudohyperbolic-type partial differential equations of order higher than second (fourth, sixth, etc.). Specific model equations of oscillations are examined in detail. For the general initial-boundary value problem of a linear differential oscillation equation with variable coefficients depending solely on the spatial variable, an energy identity satisfied by the solutions is derived using integral estimates. Furthermore, a uniqueness theorem for the solution is established.

About the authors

Alexander M. Romanenkov

Moscow Aviation Institute (National Research University); Federal Research Center “Computer Science and Control” of Russian Academy of Sciences

Author for correspondence.
Email: romanaleks@gmail.com
ORCID iD: 0000-0002-0700-8465
SPIN-code: 7586-0934
Scopus Author ID: 57196480014
ResearcherId: AAH-9530-2020
https://www.mathnet.ru/rus/person29785

Cand. Techn. Sci., Associate Professor; Associate Professor; Dept. of Mathematics; Senior Researcher; Dept. of Mathematical Modeling of Heterogeneous Systems

Russian Federation, 125993, Moscow, Volokolamskoe Shosse, 4; 119333, Moscow, Vavilova str., 44/2

References

  1. Chirikov V. A. Equations of Transverse Vibrations of Short Beams, Deposited in VINITI 06.12.2005, No. 1595-V2005, 2005 (In Russian).
  2. Rudakov I. A. Oscillation problem for an I-beam with fixed and hinged end supports, Vestn. MGTU im. N.E. Baumana. Ser. Estestv. Nauki, 2019, no. 3, pp. 4–21 (In Russian). EDN: ZYMCCL. DOI: https://doi.org/10.18698/1812-3368-2019-3-4-21.
  3. K. B. Sabitov Fluctuations of a beam with clamped ends, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2015, vol. 19, no. 2, pp. 311–324 (In Russian). EDN: UGXNZR. DOI: https://doi.org/10.14498/vsgtu1406.
  4. Timoshenko S. P. On the correction for shear of the differential equation for transverse vibrations of prismatic bars, Philos. Mag., Ser. 6, 1921, vol. 41, no. 245, pp. 744–746. DOI: https://doi.org/10.1080/14786442108636264.
  5. Timoshenko S. P. On the transverse vibrations of bars of uniform cross-section, Philos. Mag., Ser. 6, 1922, vol. 43, no. 253, pp. 125–131. DOI: https://doi.org/10.1080/14786442208633855.
  6. Kaneko T. On Timoshenko’s correction for shear in vibrating beams, J. Phys. D: Appl. Phys., 1975, vol. 8, no. 16, pp. 1927–1936. DOI: https://doi.org/10.1088/0022-3727/8/16/003.
  7. Lee J. W. Free vibration analysis of elastically restrained tapered beams with concentrated mass and axial force, Appl. Sci., 2023, vol. 13, no. 19, 10742. DOI: https://doi.org/10.3390/app131910742.
  8. Sadeqi A., Moradi Sh. Vibration analysis of elastic beams with unconstrained partial vis- coelastic layer, Int. J. Acoust. Vib., 2018, vol. 23, no. 1, pp. 65–73. DOI: https://doi.org/10.20855/ijav.2018.23.11138.
  9. Plankis A., Lebsack M., Heyliger P. Elasticity-based beam vibrations for various support conditions, Appl. Math. Model., 2015, vol. 39, no. 22, pp. 6860–6879. DOI: https://doi.org/10.1016/j.apm.2015.02.023.
  10. Bondar’ L. N., Demidenko G. V. Boundary value problems for one pseudohyperbolic equation in a quarter-plane, Sib. Adv. Math., 2022, vol. 32, no. 1, pp. 13–28. EDN: GZNLML. DOI: https://doi.org/10.1134/S1055134422010023.
  11. Shemetova V. V. An initial-boundary value problem for a pseudohyperbolic equation with nonzero boundary conditions, Math. Theor. Comput. Sci., 2024, vol. 2, no. 2, pp. 107–121. EDN: EJLGFG. DOI: https://doi.org/10.26907/2949-3919.2024.2.107-121.
  12. Kozhanov A. I. Pseudohyperbolic and hyperbolic equations with growing lower-order terms, Vestn. Chelyab. State Univ., 1999, vol. 3, no. 2, pp. 31–47 (In Russian). EDN: VVBFMT.
  13. Popov N. S. On solvability of boundary value problems for multidimensional pseudohy- perbolic equations with nonlocal integral boundary condition, Math. Notes NEFU, 2014, vol. 21, no. 2, pp. 69–80 (In Russian). EDN: TAGYMN.
  14. Pul’kina L. S. A problem with dynamic nonlocal condition for pseudohyperbolic equation, Russian Math. (Iz. VUZ), 2016, vol. 60, no. 9, pp. 38–45. EDN: WUWQIB. DOI: https://doi.org/10.3103/S1066369X16090048.
  15. Evans L. C. Partial Differential Equations, Graduate Studies in Mathematics, vol. 19. Providence, RI, American Mathematical Society, 2010, xxi+749 pp.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Authors; Samara State Technical University (Compilation, Design, and Layout)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).