Improvement of the meshless method for numerical simulation of supersonic viscous gas flows

Cover Page

Cite item

Full Text

Abstract

A meshless method is developed and implemented for the three-dimensional numerical solution of the unsteady Navier–Stokes equations. The method is based on the discretization of the computational domain using a finite set of distributed computational nodes. To enhance accuracy, a combined approximation of spatial derivatives is employed: for convective fluxes, the Polynomial Least Squares (PLS) method is used, while for viscous fluxes, the Taylor Least Squares (TLS) approximation is applied. A key feature that eliminates asymmetry in the calculation of flow around axisymmetric bodies is the transformation of the orthonormal coordinate system for each pair of nodes during convective flux computation. Reconstruction of state vectors using the MUSCL scheme and gradient vectors ensures second-order spatial accuracy for convective fluxes. Time integration is performed by an explicit Runge–Kutta method. The software implementation in C++ utilizing OpenCL enables computations on graphics processing units (GPUs). The method is validated for the problem of supersonic flow around a sphere; the results demonstrate good agreement with benchmark data, and the deviation of the convective heat flux does not exceed 2% as the number of nodes increases to $2.5 \cdot 10^7$.

About the authors

Dmitry L. Reviznikov

Moscow Aviation Institute (National Research University)

Author for correspondence.
Email: reviznikov@inbox.ru
ORCID iD: 0000-0003-0998-7975
SPIN-code: 9763-9898
Scopus Author ID: 6602701797
ResearcherId: T-4571-2018
https://www.mathnet.ru/rus/person26170

Dr. Phys. & Math. Sci., Professor; Professor; Dept. of Computational Mathematics and Programming

Russian Federation, 125993, Moscow, Volokolamskoe Shosse, 4

Andrey V. Sposobin

Moscow Aviation Institute (National Research University)

Email: spise@inbox.ru
ORCID iD: 0009-0004-7720-2556
SPIN-code: 3028-0859
Scopus Author ID: 42462268200
ResearcherId: AAV-1002-2020
https://www.mathnet.ru/rus/person34344

Dr. Phys. & Math. Sci.; Senior Researcher; R&D Dept. 806

Russian Federation, 125993, Moscow, Volokolamskoe Shosse, 4

References

  1. Sposobin A., Reviznikov D. Impact of high inertia particles on the shock layer and heat transfer in a heterogeneous supersonic flow around a blunt body, Fluids, 2021, vol. 6, no. 11, 406. EDN: VNNSHS. DOI: https://doi.org/10.3390/fluids6110406.
  2. Sposobin A. V., Reviznikov D. L. A meshless algorithm for modeling the gas-dynamic interaction between high-inertia particles and a shock layer, Fluids, 2023, vol. 8, no. 2, 53. EDN: CWPNFX. DOI: https://doi.org/10.3390/fluids8020053.
  3. Varaksin A. Yu. Gas-solid flows past bodies, High Temp., 2018, vol. 56, no. 2, pp. 275–295. EDN: XXFPFB. DOI: https://doi.org/10.1134/S0018151X18020220.
  4. Volkov A. N., Tsirkunov Yu. M., Semionov V. V. Influence of monosized and polydispersed particles on the flow structure and heat transfer in the supersonic gas-solid flow over a cylinder, Mat. Model., 2004, vol. 16, no. 7, pp. 6–12 (In Russian). EDN: VTRWIE.
  5. Romanyuk D. A., Tsirkunov Y. M. Unsteady two-phase gas-particle flows in blade cascades, Fluid Dyn., 2020, vol. 55, no. 5, pp. 609–620. EDN: SLFAXD. DOI: https://doi.org/10.1134/S0015462820050122.
  6. Bykov L. V., Nikitin P. V., Pashkov O. A. Mathematical modeling of high-speed flow processes around a blunt body, Trudy MAI, 2014, no. 78, 3 (In Russian). EDN: THYWGB.
  7. Spsobin A. V. Meshless algorithm for supersonic inviscid gas flows calculating, Trudy MAI, 2021, no. 119, 4 (In Russian). EDN: VMAZRM. DOI: https://doi.org/10.34759/trd-2021-119-04.
  8. Spsobin A. V. Meshless algorithm for calculating supersonic viscous gas flows, Trudy MAI, 2021, no. 121, 9 (In Russian). EDN: CSHYCR. DOI: https://doi.org/10.34759/trd-2021-121-09.
  9. Spsobin A. V. Meshless algorithm for calculating the interaction of large particles with a shock layer in supersonic heterogeneous flows, Kompiut. Issled. Model., 2022, vol. 14, no. 5, pp. 1007–1027 (In Russian). EDN: HDJHRC. DOI: https://doi.org/10.20537/2076-7633-2022-14-5-1007-1027.
  10. Sposobin A. V., Reviznikov D. L. Key features of numerical simulation of supersonic gas flows around blunt bodies by the meshless method, Russ. Aeronaut., 2024, vol. 67, no. 3, pp. 574–583. EDN: EGXWCJ. DOI: https://doi.org/10.3103/S1068799824030127.
  11. Edney B. E. Anomalous Heat Transfer and Pressure Distributions on Blunt Bodies at Hypersonic Speeds in the Presence of an Impinging Shock, Technical Report FFA-115. Stockholm, Aeronautical Research Institute of Sweden, 1968.
  12. Chernyshov M. V. Extreme triple configurations with negative slope angle of the reflected shock, Russ. Aeronaut., 2019, vol. 62, no. 2, pp. 259–266. EDN: DORNVG. DOI: https://doi.org/10.3103/S1068799819020120.
  13. Chernyshov M. V., Gvozdeva L. G. Triple configurations of steady and propagating shocks, Russ. Aeronaut., 2022, vol. 65, no. 2, pp. 319–344. EDN: XXKNVO. DOI: https://doi.org/10.3103/s106879982202012x.
  14. Fleener W., Watson R. Convective heating in dust-laden hypersonic flows, In: AIAA 8th Thermophysics Conference (July 16–July 18, 1973), AIAA Paper No. 73-761. Palm Spring, California, USA, 1973. DOI: https://doi.org/10.2514/6.1973-761.
  15. Holden M., Gustafson G. Q., Duryea G. R., Hudack L. T. An experimental study of particleinduced convective heating augmentation, In: AIAA 9th Fluid and Plasma Dynamics Conference (July 14–July 16, 1976), AIAA Paper No. 76-320. San Diego, California, USA, 1976. DOI: https://doi.org/10.2514/6.1976-320.
  16. Vinnikov V. V., Reviznikov D. L. Immersed boundary method for calculating supersonic flow over blunt bodies on cartesian grids, Trudy MAI, 2007, no. 27, 12 (In Russian). EDN: ITWAAF.
  17. Snazin A. A., Shevchenko A. V., Panfilov E. B. Investigation of the finite element mesh local adaptation in the problem of supersonic flow near body, Trudy MAI, 2022, no. 125, 6 (In Russian). EDN: DJAQVA. DOI: https://doi.org/10.34759/trd-2022-125-06.
  18. Deryugin Yu. N., Sarazov A. V., Zhuchkov R. N. Specific features of the Chimera calculation methodology implemented for unstructured grids, Math. Models Comput. Simul., 2017, vol. 9, no. 5, pp. 587–597. EDN: XNWLCE. DOI: https://doi.org/10.1134/S2070048217050040.
  19. Koh E. P. C., Tsai H. M., Liu F. Euler solution using Cartesian grid with least squares technique, In: AIAA 41st Aerospace Sciences Meeting and Exhibit (January 06–January 09, 2003), AIAA Paper No. 2003-1120. Reno, Nevada, USA, 2003. DOI: https://doi.org/10.2514/6.2003-1120.
  20. Sattarzadeh S., Jahangirian A., Hashemi M. Y. Unsteady compressible flow calculations with least-square mesh-less method, J. Appl. Fluid Mech., 2016, vol. 9, no. 1, pp. 233–241. DOI: https://doi.org/10.18869/acadpub.jafm.68.224.24052.
  21. Wang Y., Cai X., Zhang M., et al. The study of the three-dimensional meshless solver based on AUSM+-up and MUSCL scheme, In: Proc. Int. Conf. Electromech. Control Technol. Transp. (October 31–November 1, 2015). Zhuhai City, Guangdong Province, China, 2015, pp. 275–282. DOI: https://doi.org/10.2991/icectt-15.2015.52.
  22. Molchanov A. M. Matematicheskoe modelirovanie zadach gazodinamiki i teplomassoobmena [Mathematical Modeling of Problems in Gas Dynamics and Heat and Mass Transfer]. Moscow, Moscow Aviation Inst., 2013, 206 pp. (In Russian)
  23. Praveen C. Some results on the least squares formula, FM Report 2001-FM-06, Dept. of Aerospace Engg., IISc, 2001. https://math.tifrbng.res.in/~praveen/doc/ls_fmreport.pdf.
  24. Oñate E., Idelsohn S., Zienkiewicz O. C., et al. A stabilized finite point method for analysis of fluid mechanics problems, Comput. Methods Appl. Mech. Engrg., 1996, vol. 139, no. 1–4, pp. 315–346. EDN: AJAYJH. DOI: https://doi.org/10.1016/S0045-7825(96)01088-2.
  25. Shima E., Kitamura K. 1693–1709, AIAA J., 2011, vol. 49, no. 8. DOI: https://doi.org/10.2514/1.J050905.
  26. Ma Z. H., Wang H., Qian L. A meshless method for compressible flows with the HLLC Riemann solver, 2014, arXiv: 1402.2690 [physics.flu-dyn]. DOI: https://doi.org/10.48550/arXiv.1402.2690.
  27. Hashemi M. Y., Jahangirian A. Implicit fully mesh-less method for compressible viscous flow calculations, J. Comput. Appl. Math., 2011, vol. 235, no. 16, pp. 4687–4700. DOI: https://doi.org/10.1016/j.cam.2010.08.002.
  28. Volkov K. N., Deriugin Yu. N., Emelianov V. N., et al. Metody uskoreniia gazodinamicheskikh raschetov na nestrukturirovannykh setkakh [Methods for Accelerating Gas-Dynamic Calculations on Unstructured Grids]. Moscow, Fizmatlit, 2014, 536 pp. (In Russian)
  29. Bodryshev V. V., Abashev V. M., Tarasenko O. S., Mirolyubova T. I. Image intensity as a quantitative aspect of gas flow parameters, Trudy MAI, 2016, no. 88, 5 (In Russian). EDN: WJLFQB.
  30. Billig F. S. Shock-wave shapes around spherical- and cylindrical-nosed bodies, J. Spacecr. Rockets, 1967, vol. 4, no. 6, pp. 822–823. DOI: https://doi.org/10.2514/3.28969.
  31. Lyubimov A. N., Rusanov V. V. Techenie gaza okolo tupykh tel [Gas Flow Around Blunt Bodies], vol. 1. Moscow, Nauka, 1970, 287 pp. (In Russian)
  32. Polezhaev Yu. V., Yurevich F. B. Teplovaya zashchita [Thermal Protection]. Moscow, Energiya, 1976, 392 pp. (In Russian)
  33. Fay J. A., Riddell F. R. Theory of stagnation point heat transfer in dissociated air, J. Aeronaut. Sci., 1958, vol. 25, no. 2, pp. 73–85. DOI: https://doi.org/10.2514/8.7517.
  34. Tolstykh A. I., Shirobokov D. A. Meshless method based on radial basis functions, Comput. Math. Math. Phys., 2005, vol. 45, no. 8, pp. 1447–1454. EDN: LJMDPJ.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure 1. Distribution of computational nodes in the central cross-section of the computational domain

Download (413KB)
3. Figure 2. Distribution of computational nodes on the sphere surface

Download (289KB)
4. Figure 3. Schematic diagram of a computational node and its neighborhood (cloud of neighboring nodes)

Download (54KB)
5. Figure 4. Distribution of neighbor node clouds in the computational domain

Download (92KB)
6. Figure 5. Schlieren image of supersonic flow past a sphere

Download (38KB)
7. Figure 6. Gas density distribution in the central cross-section of the computational domain for supersonic flow past a sphere

Download (57KB)
8. Figure 7. Gas pressure distribution in the central cross-section of the computational domain for supersonic flow past a sphere

Download (57KB)
9. Figure 8. Mach number distribution in the central cross-section of the computational domain for supersonic flow past a sphere

Download (57KB)
10. Figure 9. Comparison of the calculated surface pressure distribution on the sphere with benchmark data

Download (93KB)
11. Figure 10. Comparison of the calculated convective heat flux to the sphere surface with an approximate analytical solution

Download (126KB)

Copyright (c) 2025 Authors; Samara State Technical University (Compilation, Design, and Layout)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).