Approximate solution to the Riemann problem in non-classical gas dynamics

Cover Page

Cite item

Full Text

Abstract

This study considers an approach to construct an approximate solver for the non-classical Riemann problem. In this regime, the solution of the discontinuity decay problem may contain composite waves, including both classical and non-classical compression and rarefaction waves. The algorithm for finding the exact solution is based on a geometric representation of shock and rarefaction waves on isentropic curves and involves the repeated use of iterative methods to solve local tasks, such as identifying inflection points on isentropes, points of tangency between a straight line and a curve, intersection points, and others. A significant challenge when using iterative methods is the need to specify initial guesses that ensure method convergence. The approach proposed in this work is based on tabulating exact solutions for Riemann problems over a wide range of initial state parameters. These tabulated data are then used to find an approximate solution without requiring iterative methods. The approximate solver was successfully applied to solve two one-dimensional discontinuity decay problems in the non-classical domain.

About the authors

Mariya R. Koroleva

Udmurt Federal Research Center of the Ural Branch of the Russian Academy of Sciences

Author for correspondence.
Email: koroleva@udman.ru
ORCID iD: 0000-0001-5697-9199
https://www.mathnet.ru/rus/person73142

Cand. Phys. & Math. Sci.; Senior Researcher; Institute of Mechanics

Russian Federation, 426067, Izhevsk, T. Baramzina str., 34

References

  1. Deville M. O. Exact solutions of the Navier–Stokes Equations, In: An Introduction to the Mechanics of Incompressible Fluids, vol. 22. Cham, Springer, 2022, pp. 51–89. DOI: https://doi.org/10.1007/978-3-031-04683-4_3.
  2. Nikonorova R., Siraeva D., Yulmukhametova Y. New exact solutions with a linear velocity field for the gas dynamics equations for two types of state equations, Mathematics, 2022, vol. 10, no. 1, 123. EDN: FSXDCX. DOI: https://doi.org/10.3390/math10010123.
  3. Prosviryakov E. Yu., Ledyankina O. A., Goruleva L. S. Exact solutions to the Navier–Stokes equations for describing the flow of multicomponent fluids with internal heat generation, Russ. Aeronaut., 2024, vol. 67, no. 1, pp. 60–69. EDN: CLAHOC. DOI: https://doi.org/10.3103/S1068799824010070.
  4. Brutyani M. A., Ibragimov U. G. Exact solution of the Navier–Stokes equations for rotational tornado-like flow of a viscous gas, Proc. Moscow Inst. Phys. Technol., 2024, vol. 16, no. 3(63), pp. 92–104 (In Russian). EDN: FPNPCB.
  5. Galkin V. A., Dubovik A. O., Morgun D. A. Visualization of flow of a viscous incompressible fluid corresponding to exact solutions of the Navier–Stokes equations, Sci. Vis., 2024, vol. 16, no. 1, pp. 52–63 (In Russian). EDN: NWGODH. DOI: https://doi.org/10.26583/sv.16.1.05.
  6. Guardone A., Vigevano L., Argrow B. M. Assessment of thermodynamic models for dense gas dynamics, Phys. Fluids, 2004, vol. 16, no. 11, pp. 3878–3887. DOI: https://doi.org/10.1063/1.1786791.
  7. Fossati M., Quartapelle L. The Riemann problem for hyperbolic equations under a nonconvex flux with two inflection points, 2014, arXiv: 1402.5906 [physics.flu-dyn].
  8. Quartapelle L., Castelletti L., Guardone A., Quaranta G. Solution of the Riemann problem of classical gasdynamics, J. Comput. Phys., 2003, vol. 190, no. 1, pp. 118–140. DOI: https://doi.org/10.1016/S0021-9991(03)00267-5.
  9. Coquelet C., Chapoy A., Richon D. Development of a new alpha function for the Peng–Robinson equation of state: Comparative study of alpha Function models for pure gases (natural gas components) and water-gas systems, Int. J. Thermophys., 2004, vol. 25, no. 1, pp. 133–158. DOI: https://doi.org/10.1023/b:ijot.0000022331.46865.2f.
  10. Qi J., Xu J., Han K., et al. Development and validation of a Riemann solver in Open-FOAM® for non-ideal compressible fluid dynamics, Eng. Appl. Comput. Fluid Mech., 2022, vol. 16, no. 1, pp. 116–140. DOI: https://doi.org/10.1080/19942060.2021.2002723.
  11. Godunov S. K., Zabrodin A. V., Ivanov M. Ya., et al. Chislennoe reshenie mnogomernykh zadach gazovoi dinamiki [Numerical Solution of Multidimensional Problems in Gas Dynamics]. Moscow, Nauka, 1976, 401 pp. (In Russian)
  12. Glass O. An extension of Oleinik’s inequality for general 1D scalar conservation laws, J. Hyperbolic Differ. Equ., 2008, vol. 5, no. 1, pp. 113–165. DOI: https://doi.org/10.1142/S0219891608001398.
  13. Zhang L., Gao G. Equations of states and polytropic processes of van der Waals gases, Phys. Eng., 2024, vol. 34, no. 3, pp. 16–21. DOI: https://doi.org/10.26599/PHYS.2024.9320303.
  14. Parondzhanov V. D., Mitkin S. B. The DRAKON medical algorithmic language and the DRAKON-builder program for the creation and application of clinical algorithms, Virtual Technol. Med., 2022, no. 1, pp. 32–44 (In Russian). EDN: YKCSIC. DOI: https://doi.org/10.46594/2687-0037_2022_1_1410.
  15. Liu T.-P. The Riemann problem for for general systems of conservation laws, J. Differ. Equ., 1975, vol. 18, no. 1, pp. 218–234. DOI: https://doi.org/10.1016/0022-0396(75)90091-1.
  16. Smith R. G. The Riemann problem in gasdynamics, Trans. Amer. Math. Soc., 1979, vol. 249, no. 1, pp. 1–50. DOI: https://doi.org/10.1090/S0002-9947-1979-0526309-2.
  17. Koroleva M. R., Tenenev V. A. Approximate Riemann solvers for the Soave–Redlich–Kwong equation of state, Russ. J. Nonlinear Dyn., 2024, vol. 20, no. 3, pp. 345–359. EDN: KFCNYJ. DOI: https://doi.org/10.20537/nd240905.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure 1. ($p$–$v$) diagram close to the critical point; the inversion zone ($G < 0$) is shaded in gray

Download (188KB)
3. Figure 2. Schematic of the Riemann problem solution for the fan–shock case in classical gas dynamics: a) $(p$–$v)$ plane; b) characteristic field; c) pressure distribution; d) specific volume distribution; e) velocity distribution

Download (222KB)
4. Figure 3. Schematic of the Riemann problem solution for non-classical gas dynamics: a) $F$-wave pattern from the right initial state for the $f$–$F$ case; b) $Fs$-wave pattern from the left initial state for the $Fs$–$f$ case

Download (134KB)
5. Figure 4. DRAKON flowchart of the algorithm for wave solution identification ($v_L < v$)

Download (121KB)
6. Figure 5. DRAKON flowchart of the algorithm for wave solution identification ($v_L > v$)

Download (148KB)
7. Figure 6. Bilinear interpolation for the solution function

Download (123KB)
8. Figure 7. Solution construction

Download (131KB)

Copyright (c) 2025 Authors; Samara State Technical University (Compilation, Design, and Layout)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).