Stochastic model for forecasting the dynamics of gross regional product and regional production resources

Cover Page

Cite item

Full Text

Abstract

The article presents a stochastic model for forecasting dynamics of gross regional product (GRP), developed using statistical data from Samara Region for the period 1998–2023. The model enables assessment of investment impact on regional economic development. To describe GRP dynamics, we propose a stochastic differential balance equation that relates GRP indicators to regional production resource (RPR) volumes. Within the study, we have: (1) estimated RPR volumes, (2) constructed theoretical trajectories of GRP and RPR dynamics, and (3) derived mathematical expectation curves for their growth. Numerical analysis demonstrates the model’s high consistency with empirical data.

About the authors

Leonid A. Saraev

Samara National Research University

Author for correspondence.
Email: saraev_leo@mail.ru
ORCID iD: 0000-0003-3625-5921
Scopus Author ID: 57219452875
https://www.mathnet.ru/rus/person41652

Dr. Phys. & Math. Sci., Professor; Professor; Dept. of Mathematics and Business Informatics

Russian Federation, 443086, Samara, Moskovskoye shosse, 34

Anastasiya V. Yuklasova

Samara National Research University

Email: yuklasova.anasta@mail.ru
ORCID iD: 0009-0007-9684-8864
https://www.mathnet.ru/eng/person230061

Cand. Econ. Sci., Associate Professor; Associate Professor; Dept. of State and Municipal Administration

Russian Federation, 443086, Samara, Moskovskoye shosse, 34

References

  1. Harrod R. F. The Trade Cycle. Oxford, Clarendon Press, 1936, 248 pp.
  2. Dykas P., Tokarski T., Wisła R. The Solow Model of Economic Growth. Application to Contemporary Macroeconomic Issues, Routledge Studies in Economic Theory, Method and Philosophy. London, Routledge, 2023, xvi+248 pp. https://hdl.handle.net/10419/290597.DOI: https://doi.org/10.4324/9781003323792.
  3. Denison E. F. The contribution of capital to economic growth, The American Economic Review, 1980, vol. 70, no. 2, pp. 220–224. http://www.jstor.org/stable/1815471.
  4. Lucas R. E. On the mechanics of economic development, Journal of Monetary Economics, 1988, vol. 22, no. 1, pp. 3–42. DOI: https://doi.org/10.1016/0304-3932(88)90168-7.
  5. Romer R. M. Endogenous technological change, Journal of Political Economy, 1990, vol. 98, no. 5, pp. S71–S102. http://www.jstor.org/stable/2937632.
  6. Grossman G. M., Helpman E. Innovation and Growth in the Global Economy. Cambridge, Massachusetts, London, MIT Press, 1991, xiv+359 pp.
  7. Barro R. J., Sala-i-Martin X. Economic Growth. Cambridge, Massachusetts, London, MIT Press, 1995, xvii+654 pp.
  8. Bruno M., Easterly W. Inflation crises and long-run growth, Journal of Monetary Economics, vol. 41, no. 1, pp. 3–26. DOI: https://doi.org/10.1016/s0304-3932(97)00063-9.
  9. Gong G., Greiner A., Semmler W. The Uzawa–Lucas model without scale effects: Theory and empirical evidence, Structural Change and Economic Dynamics, 2004, vol. 15, no. 4, pp. 401–420. DOI: https://doi.org/10.1016/j.strueco.2003.10.002.
  10. Korolev A. V., Matveenko V. D. Structure of equilibrium time-varying trajectories in the Lucas endogenous growth model, Automation and Remote Control, 2006, vol. 67, no. 4, pp. 624–633. EDN: LJYCZD. DOI: https://doi.org/10.1134/S0005117906040102.
  11. Kuznetsov Yu. A., Michasova O. V. Comparative analysis of simulation modeling packages and computer mathematics systems for economic growth theory models, Economic Analysis: Theory and Practice, 2007, no. 5, pp. 23–30 (In Russian). EDN: HWIKHF.
  12. Kuznetsov Yu. A., Michasova O. V. The generalized model of economic growth with human capital accumulation, Vestnik Sankt-Peterburgskogo Universiteta, Prikladnaya Matematika, Informatika, Protsessy Upravleniya, 2012, no. 4, pp. 46–57 (In Russian). EDN: PFQNBT.
  13. Prasolov A. V. Matematicheskiye metody ekonomicheskoy dinamiki [Mathematical Methods in Economic Dynamics]. St. Petersburg, Lan’, 2015, 352 pp. (In Russian). EDN: VLRGLN.
  14. Itô K., McKean H. P. Diffusion Processes and Their Sample Paths, Die Grundlehren der mathematischen Wissenschaften, vol. 125. Berlin, Springer-Verlag, 1974, xiv+321 pp.
  15. Solov’ev V. I. Ekonomiko-matematicheskoye modelirovaniye rynka programmnogo obespecheniya [Economic-Mathematical Modeling of the Software Market]. Moscow, Vega–Info, 2009, 176 pp. (In Russian). EDN: QTSXXZ.
  16. Saraev A. L., Saraev L. A. Stochastic calculation of curves dynamics of enterprise, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2020, vol. 24, no. 2, pp. 343–364. EDN: MLTMBA. DOI: https://doi.org/10.14498/vsgtu1700.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure 1. Empirical trajectory of gross regional product $V$ growth (according to Table 1) and predicted trajectory of regional production resource $Q$ growth (according to Table 2)

Download (77KB)
3. Figure 2. Stochastic growth trajectories of gross regional product $V(t)$ and regional production resource $Q(t)$ obtained through: numerical simulation using algorithm (12), and calculations via formula (22); points represent statistical data from Tables 1 and 2

Download (79KB)
4. Figure 3. Mathematical expectations $\langle V \rangle$ and $\langle Q \rangle$ obtained by numerical solution of the Cauchy problem (18), (10) using (22); points represent statistical data from Tables 1 and 2

Download (82KB)

Copyright (c) 2025 Authors; Samara State Technical University (Compilation, Design, and Layout)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).