On the stabilization rate of periodic perturbations of equilibrium states for the one-dimensional Broadwell kinetic equation
- Authors: Filippov G.A.1
-
Affiliations:
- Moscow State University of Civil Engineering (National Research University)
- Issue: Vol 29, No 2 (2025)
- Pages: 363-380
- Section: Mathematical Modeling, Numerical Methods and Software Complexes
- URL: https://journals.rcsi.science/1991-8615/article/view/349676
- DOI: https://doi.org/10.14498/vsgtu2186
- EDN: https://elibrary.ru/NDYKAL
- ID: 349676
Cite item
Full Text
Abstract
The paper deals with a procedure for constructing solutions to the problem of stabilizing periodic perturbations of equilibrium states in the onedimensional Broadwell model. The solution procedure employs the Fourier method to solve the system of equations for the Fourier coefficients of the variables. In the Fourier transform space, the system reduces to a projection onto a single variable, enabling expression of the remaining Fourier coefficients $u_{k,l}$, $v_{k,l}$, $w_{k,l}$ through $z_{k,l}$ by using state equations.
The linearization of the $z$-projection plays a crucial role in studying the stabilization rate, representing in this case an integro-differential operator described in terms of the Paley–Wiener theorem. The discrepancy between the right and left sides of the one-dimensional system creates obstacles in the Fourier method when constructing annihilators of secular terms for the corresponding projection. These obstacles prevent obtaining solutions for arbitrary initial data describing periodic perturbations of the equilibrium position. It is established that the arising obstacles are identical for different projections.
Full Text
##article.viewOnOriginalSite##About the authors
Georgiy A. Filippov
Moscow State University of Civil Engineering (National Research University)
Author for correspondence.
Email: g.philippov@yandex.ru
ORCID iD: 0009-0005-0054-1696
https://www.mathnet.ru/rus/person207698
Postgraduate Student; Dept. of Higher Mathematics
Russian Federation, 129337, Moscow, Yaroslavskoye sh., 26References
- Boltzmann L. Lektsii po teorii gazov [Lectures on the Theory of Gases]. M., Gostekhizdat, 1956, 554 pp. (In Russian)
- Godunov S. K., Sultangazin U. M. On discrete models of the kinetic Boltzmann equation, Russian Math. Surveys, 1971, vol. 26, no. 3, pp. 1–56. DOI: https://doi.org/10.1070/RM1971v026n03ABEH003822.
- Sultanagazin U. M. Diskretnyye nelineynyye modeli uravneniya Bol’tsmana [Discrete Nonlinear Models of the Boltzmann Equation]. Alma-Ata, Nauka, 1985, 192 pp. (In Russian)
- Euler N., Steeb W.-H. Painlevé test and discrete Boltzmann equations, Australian J. Phys., 1989, vol. 42, no. 1, pp. 1–10. DOI: https://doi.org/10.1071/PH89000.
- Broadwell J. E. 401–414, J. Fluid Mech., 1964, vol. 19, no. 3. DOI: https://doi.org/10.1017/S0022112064000817.
- Vedenyapin V. V. Kineticheskiye uravneniya Bol’tsmana i Vlasova [Kinetic Boltzmann and Vlasov Equations]. Moscow, Fizmatlit, 2001, 112 pp. (In Russian)
- Radkevich E. V., Vasil’eva O. A., Dukhnovskii S. A. Local equilibrium of the Carleman equation, J. Math. Sci. (N. Y.), 2015, vol. 207, no. 2, pp. 296–323. EDN: WOEYSR. DOI: https://doi.org/10.1007/s10958-015-2373-x.
- Radkevich E. V. The existence of global solutions to the Cauchy problem for discrete kinetic equations, J. Math. Sci. (N. Y.), 2012, vol. 181, no. 2, pp. 232–280. EDN: PDKBIR. DOI: https://doi.org/10.1007/s10958-012-0683-9.
- Radkevich E. V. The existence of global solutions to the Cauchy problem for discrete kinetic equations. II, J. Math. Sci. (N. Y.), 2012, vol. 181, no. 5, pp. 701–750. EDN: PDLYGZ. DOI: https://doi.org/10.1007/s10958-012-0711-9.
- Vasil’eva O. A., Dukhnovskii S. A., Radkevich E. V. On the nature of local equilibrium in the Carleman and Godunov–Sultangazin equations, In: Proceedings of the Seventh International Conference on Differential and Functional-Differential Equations (Moscow, August 22–29, 2014). Part 3, CMFD, 60. Moscow, PFUR, 2016, pp. 23–81 (In Russian). EDN: PGBIKG.
- Radkevich E. V., Vasil’eva O. A., Filippov G. A. On stabilization rate of solutions of the Cauchy problem for the two-dimensional kinetic Broadwell equation with periodic initial data (a regular process), Eurasian J. Math. Comp. Appl., 2025 (to appear).
- Platonova K. S., Borovskih A. V. Group analysis of the one-dimensional Boltzmann equation. Invariants and the problem of moment system closure, Theoret. and Math. Phys., 2021, vol. 208, no. 3, pp. 1165–1181. EDN: KNHKSI. DOI: https://doi.org/10.1134/S0040577921090014.
Supplementary files

