On the constructive solvability of a nonlinear Volterra integral equation on the entire real line

Cover Page

Cite item

Full Text

Abstract

A nonlinear integral equation with a Hammerstein–Volterra operator on the entire real line is considered. A constructive existence theorem for a bounded and continuous solution is established. Moreover, the uniform convergence of successive approximations to the solution is proved, with the error decreasing at a geometric rate. The integral asymptotics of the constructed solution are then investigated. Additionally, the uniqueness of the solution is demonstrated within a specific subclass of bounded and continuous functions. Finally, specific examples of equations and nonlinearities satisfying all the conditions of the theorems are provided.

About the authors

Khachatur A. Khachatryan

Yerevan State University

Author for correspondence.
Email: khachatur.khachatryan@ysu.am
ORCID iD: 0000-0002-4835-943X
Scopus Author ID: 24461615400
http://www.mathnet.ru/person27540

Dr. Phys. & Math. Sci., Professor; Head of the Dept.; Dept. of Theory of Functions and Differential Equations

Armenia, 0025, Yerevan, A. Manukyan str., 1

Aram H. Muradyan

Armenian State University of Economics

Email: muradyan.aram@asue.am
ORCID iD: 0009-0007-3529-9283
https://www.mathnet.ru/rus/person230809

Cand. Phys. & Math. Sci., Associate Professor; Associate Professor; Dept of Higher Mathematics

Armenia, 0025, Yerevan, Nalbandyan str., 128

References

  1. Neimark Yu. I. On the admissibility of linearization in stability research, Dokl. Akad. Nauk SSSR, 1959, vol. 127, no. 5, pp. 961–964 (In Russian).
  2. Bellman R., Cooke K. L. Differential-Difference Equations, Mathematics in Science and Engineering, vol. 6. New York, London, Academic Press, 1963, xvi+462 pp.
  3. Nakhushev A. M. Uravneniya matematicheskoy biologii [Equations of Mathematical Biology]. Moscow, Vyssh. shk., 1995, 301 pp. (In Russian). EDN: PDBBNB.
  4. Khachatryan Kh. A., Terdzyan Ts. E., Broyan M. F. One-parameter family of integrable solutions of a system of nonlinear integral equations of the Hammerstein–Volterra type in the supercritical case, Differ. Equ., 2016, vol. 52, no. 8, pp. 1036–1042. EDN: XNRJXJ. DOI: https://doi.org/10.1134/S0012266116080097.
  5. Khachatryan Kh. A., Terjyan Ts. E., Broyan M. F. On solvability of a Hammerstein–Voltera type nonlinear system of integral equations in critical case, Vladikavkaz. Mat. Zh., 2016, vol. 18, no. 4, pp. 71–79 (In Russian). EDN: XVSSLD. DOI: https://doi.org/10.23671/VNC.2016.4.5996.
  6. Khachatryan Kh. A., Grigoryan S. A. On nontrivial solvability of a nonlinear Hammerstein–Volterra type integral equation, Vladikavkaz. Mat. Zh., 2012, vol. 14, no. 2, pp. 57–66 (In Russian). EDN: OYFBBT. DOI: https://doi.org/10.23671/VNC.2012.14.10964.
  7. Azizyan E. O., Khachatryan Kh. A. One-parametric family of positive solutions for a class of nonlinear discrete Hammerstein-Volterra equations, Ufa Math. J., 2016, vol. 8, no. 1, pp. 13–19. EDN: XLIBFL. DOI: https://doi.org/10.13108/2016-8-1-13.
  8. Askhabov S. N. Volterra integral equation with power nonlinearity, Chebyshevskii Sb., 2022, vol. 23, no. 5, pp. 6–19 (In Russian). EDN: EIGULQ. DOI: https://doi.org/10.22405/2226-8383-2022-23-5-6-19.
  9. Askhabov S. N. Volterra integro-differential equation of arbitrary order with power non-linearity, Chebyshevskii Sb., 2023, vol. 24, no. 4, pp. 85–103 (In Russian). EDN: JXSSJW. DOI: https://doi.org/10.22405/2226-8383-2023-24-4-85-103.
  10. Askhabov S. N. A system of inhomogeneous integral equations of convolution type with power nonlinearity, Sib. Math. J., 2023, vol. 64, no. 3, pp. 691–698. EDN: EXKOSK. DOI: https://doi.org/10.1134/S0037446623030163.
  11. Rudin W. Functional Analysis, International Series in Pure and Applied Mathematics. New York, NY, McGraw-Hill, 1991, xviii+424 pp.
  12. Khachatryan A. Kh., Khachatryan Kh. A., Petrosyan H. S. Questions of existence, absence, and uniqueness of a solution to one class of nonlinear integral equations on the whole line with an operator of Hammerstein–Stieltjes type, Trudy Inst. Mat. i Mekh. UrO RAN, 2024, vol. 30, no. 1, pp. 249–269 (In Russian). EDN: ECMMEF. DOI: https://doi.org/10.21538/0134-4889-2024-30-1-249-269.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure 1. Intersection of the graph of the function $y=G(u)$ with the line passing through the points $(\beta, G(\beta))$ and $({\beta}/{2}, G({\beta}/{2}))$

Download (73KB)

Copyright (c) 2025 Authors; Samara State Technical University (Compilation, Design, and Layout)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).