Higher-order difference schemes for the loaded heat conduction equations with boundary conditions of the first kind
- Authors: Beshtokov M.K.1
-
Affiliations:
- Institute of Applied Mathematics and Automation KBSC RAS
- Issue: Vol 29, No 2 (2025)
- Pages: 220-240
- Section: Differential Equations and Mathematical Physics
- URL: https://journals.rcsi.science/1991-8615/article/view/349668
- DOI: https://doi.org/10.14498/vsgtu2142
- EDN: https://elibrary.ru/EORDFG
- ID: 349668
Cite item
Full Text
Abstract
This paper investigates initial-boundary value problems for loaded heat equations with boundary conditions of the first kind. High-accuracy difference schemes are constructed for numerical solution of these problems. A priori estimates in discrete form are obtained through energy inequalities. The derived estimates establish solution uniqueness and stability with respect to both initial data and right-hand side terms, while proving convergence of the discrete solution to the original differential problem at $O(h^4+\tau^2)$ rate (under sufficient smoothness assumptions). Numerical experiments with test cases validate all theoretical findings.
Full Text
##article.viewOnOriginalSite##About the authors
Murat Kh. Beshtokov
Institute of Applied Mathematics and Automation KBSC RAS
Author for correspondence.
Email: beshtokov-murat@yandex.ru
ORCID iD: 0000-0003-2968-9211
Scopus Author ID: 55933179800
ResearcherId: L-8961-2017
https://www.mathnet.ru/rus/person52345
Cand. Phys. & Math. Sci., Associate Professor; Leading Researcher; Dept. of Computational Methods
Russian Federation, 360000, Nal’chik, Shortanova st., 89 aReferences
- Nakhushev A. M. Uravneniya matematicheskoy biologii [Equations of Mathematical Biology]. Moscow, Vyssh. shk., 1995, 301 pp. (In Russian). EDN: PDBBNB.
- Nakhushev A. M., Borisov V. N. Boundary value problems for loaded parabolic equations and their applications to the prediction of ground water level, Differ. Uravn., 1977, vol. 13, no. 1, pp. 105–110 (In Russian).
- Wiener J., Debnath L. A survey of partial differential equations with piecewise continuous arguments, Int. J. Math. Math. Sci., 1995, vol. 18, no. 2, pp. 209–228. DOI: https://doi.org/10.1155/s0161171295000275.
- Shkhanukov M. Kh. On some boundary value problems for an equation of third order arising from simulation of filtration of a fluid in porous media, Differ. Uravn., 1982, vol. 18, no. 4, pp. 689–699 (In Russian).
- Kozhanov A. I. A nonlinear loaded parabolic equation and a related inverse problem, Math. Notes, 2004, vol. 76, no. 6, pp. 784–795. DOI: https://doi.org/10.1023/B:MATN.0000049678.16540.a5.
- Dzhenaliyev M. T., Ramazanov M. I. Nagruzhennyye uravneniya kak vozmushcheniya differentsial’nykh uravneniy [Loaded Equations as Perturbations of Differential Equations]. Almaty, Gylim, 2010, 335 pp. (In Russian)
- Kneser A. Belastete integralgleichungen, Rend. Circ. Matem. Palermo, 1914, vol. 37, pp. 169–197. DOI: https://doi.org/10.1007/BF03014816.
- Nakhushev A. M. Nagruzhennyye uravneniya i ikh primeneniya [Loaded Equations and Their Applications]. Moscow, Nauka, 2012, 231 pp. (In Russian)
- Guezane-Lakoud A., Belakroum D. Time-discretization schema for an integro-differential Sobolev type equation with integral conditions, Appl. Math. Comput., 2012, vol. 218, no. 9, pp. 4695–4702. DOI: https://doi.org/10.1016/j.amc.2011.11.077.
- Luo Z. D. Teng F. A reduced-order extrapolated finite difference iterative scheme based on POD method for 2D Sobolev equation, Appl. Math. Comput., 2018, vol. 329, pp. 374–383. DOI: https://doi.org/10.1016/j.amc.2018.02.022.
- Beshtokov M. Kh. Numerical analysis of initial-boundary value problem for a Sobolev-type equation with a fractional-order time derivative, Comput. Math. Math. Phys., 2019, vol. 59, no. 2, pp. 175–192. DOI: https://doi.org/10.1134/S0965542519020052.
- Grasselli M., Pata V. A reaction-diffusion equation with memory, Discrete Contin. Dyn. Syst., 2006, vol. 15, no. 4, pp. 1079–1088. DOI: https://doi.org/10.3934/dcds.2006.15.1079.
- Olmstead W. E., Davis S. H., Rosenblat S., Kath W. L. Bifurcation with memory, SIAM J. Appl. Math., 1986, vol. 46, no. 2, pp. 171–188. DOI: https://doi.org/10.1137/0146013.
- Yong J., Zhang X. Heat equations with memory, Nonlinear Anal., Theory Methods Appl., 2005, vol. 63, no. 5–7, pp. e99–e108. DOI: https://doi.org/10.1016/j.na.2005.02.033.
- Beshtokov M. Kh., Vodahova V. A. Nonlocal boundary value problems for a fractional-order convection-diffusion equation, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2019, vol. 29, no. 4, pp. 459–482 (In Russian). DOI: https://doi.org/https://doi.org/10.20537/vm190401.
- Abdullaev V. M., Aida-zade K. R. On the numerical solution of loaded systems of ordinary differential equations, Comput. Math. Math. Phys., 2004, vol. 44, no. 9, pp. 1505–1515. EDN: XLKZWN.
- Abdullaev V. M., Aida-zade K. R. Numerical solution of optimal control problems for loaded lumped parameter systems, Comput. Math. Math. Phys., 2006, vol. 46, no. 9, pp. 1487–1502. EDN: XLLQVH. DOI: https://doi.org/10.1134/S096554250609003X.
- Abdullaev V. M., Aida-zade K. R. Finite-difference methods for solving loaded parabolic equations, Comput. Math. Math. Phys., 2016, vol. 56, no. 1, pp. 93-105 (In Russian). EDN: WUXIWJ. DOI: https://doi.org/10.1134/S0965542516010036.
- Alikhanov A. A., Berezgov A. M., Shkhanukov-Lafishev, M. Kh. Boundary value problems for certain classes of loaded differential equations and solving them by finite difference methods, Comput. Math. Math. Phys., 2008, vol. 48, no. 9, pp. 1581–1590. DOI: https://doi.org/10.1134/S096554250809008X.
- Beshtokov M. Kh. The third boundary value problem for loaded differential Sobolev type equation and grid methods of their numerical implementation, IOP Conf. Ser.: Mater. Sci. Eng., 2016, vol. 158, 012019. EDN: YVCYFN. DOI: https://doi.org/10.1088/1757-899X/158/1/012019.
- Samarskii A. A. Schemes of high-order accuracy for the multi-dimensional heat conduction equation, U.S.S.R. Comput. Math. Math. Phys., 1963, vol. 3, no. 5, pp. 1107–1146. DOI: https://doi.org/10.1016/0041-5553(63)90104-6.
- Lele S. K. Compact finite difference schemes with spectral-like resolution, J. Comput. Phys., 1992, vol. 103, no. 1, pp. 16–42. DOI: https://doi.org/10.1016/0021-9991(92)90324-R.
- Matus P. P., Utebaev B. D. Compact and monotone difference schemes for parabolic equations, Math. Models Comput. Simul., 2021, vol. 13, no. 6, pp. 1038–1048. DOI: https://doi.org/10.1134/S2070048221060132.
- Alikhanov A., Beshtokov M., Mehra M. The Crank–Nicolson type compact difference schemes for a loaded time-fractional Hallaire equation, Fract. Calc. Appl. Anal., 2021, vol. 24, no. 4, pp. 1231–1256. DOI: https://doi.org/10.1515/fca-2021-0053.
- Beshtokov M. Kh. Boundary value problems for a loaded modified fractional-order moisture transfer equation with the Bessel operator and difference methods for their solution, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2020, vol. 30, no. 2, pp. 158–175 (In Russian). DOI: https://doi.org/10.35634/vm200202.
- Samarskiy A. A. Teoriya raznostnykh skhem [Theory of Difference Schemes]. Moscow, Nauka, 1977, 656 pp. (In Russian)
- Samarskiy A. A., Gulin A. V. Ustoychivost’ raznostnykh skhem [Stability of Difference Schemes]. Moscow, URSS, 2005, 384 pp. (In Russian)
- Voevodin A. F., Shugrin S. M. Chislennyye metody rascheta odnomernykh sistem [Numerical Methods for Calculating One-Dimensional Systems]. Novosibirsk, Nauka, 1981, 208 pp. (In Russian)
Supplementary files

