Equation on the basis of one-dimensional chaotic dynamics
- Authors: Volov D.B.1
-
Affiliations:
- Samara State Transport University
- Issue: Vol 17, No 1 (2013)
- Pages: 334-342
- Section: Articles
- URL: https://journals.rcsi.science/1991-8615/article/view/34721
- DOI: https://doi.org/10.14498/vsgtu1175
- ID: 34721
Cite item
Full Text
Abstract
Modified Klein–Gordon–Fock equations were obtained on the basis of one-dimensional chaotic dynamics and the original Lagrangians were found. The concepts of $m$-exponential map and groups with broken symmetry are introduced. A system of bitrial orthogonal functions is considered.
Full Text
##article.viewOnOriginalSite##About the authors
Dmitry Borisovich Volov
Samara State Transport University
Email: volovdm@mail.ru
Doctor of technical sciences, Associate professor
References
- Д. Б. Волов, "Обобщенная динамика Ферхюльста-Рикера-Планка и еë связь с постоянной тонкой структуры", Вестн. транспорта Поволжья, 2011, № 5(29), 82-90
- P.-F. Verhulst, "Notice sur la loi que la population poursuit dans son accroissement", Corresp. Math. Phys., 10 (1838), 113-121
- W. E. Ricker, "Stock and recruitment", J. Fish. Res. Bd. Canada, 11:5 (1954), 539-623
- D. B. Volov, Specific behavior of one chaotic dynamics near the fine-structure constant, 2012, 9 pp.
- A. P. Trunev, "Binding energy bifurcation and chaos in atomic nuclei", Chaos and Correlation, 2012, 10 pp. (http://chaosandcorrelation.org/Chaos/CR_1_5_2012.pdf)
- Д. Б. Волов, "Битриальный подход к теории поля", Вестн. СамГУПС, 2012, № 15, 144-153
- Н. Н. Боголюбов, Д. В. Ширков, Введение в теорию квантовых полей, Наука, М., 1984, 597 с.
Supplementary files

