The energy levels and eigen wave functions of electrons in quantum rings in the magnetic field


Cite item

Full Text

Abstract

The solution of the eigenvalue problem for non interacting electrons of the quantum ring in the magnetic field is discussed. The potential shape of the quantum ring permitting analytical solution was proposed. The solution of the appropriate eigenvalue problem was found in the terms of the Heun functions and expression for the energy levels was obtained. It was pointed out that proposed potential might be considered as a single-well or double-well potential of concentric quantum rings.

About the authors

Elena Viktorovna Antropova

Obninsk Institute for Nuclear Power Engineering of the National Research Nuclear University MEPhI

Email: antrolen@yandex.ru

Alexander Anatolievich Bryzgalov

Obninsk Institute for Nuclear Power Engineering of the National Research Nuclear University MEPhI

Email: sandro185@mail.ru

Fedor Ivanovich Karmanov

Obninsk Institute for Nuclear Power Engineering of the National Research Nuclear University MEPhI

Email: fikarm@yandex.ru
Candidate of physico-mathematical sciences, Associate professor

References

  1. А. Г. Ушверидзе, "Квазиточнорешаемые модели квантовой механики", Физика элементарных частиц и атомного ядра, 20:5 (1989), 1185-1245
  2. W.-C. Tan, J. C. Inkson, "Electron states in a two-dimensional ring — an exactly soluble model", Semicond. Sci. Technol., 11:11 (1996), 1635-1641
  3. H. A. Mavromatis, "Generalization of Casas-Plastino potentials to three dimensions", Amer. J. Phys., 68:3 (2000), 287-288
  4. А. А. Брызгалов, Ф. И. Карманов, "Метод расщепления по физическим факторам в задаче о временной динамике волновых функций электронов двумерного квантового кольца", Матем. моделирование, 22:6 (2010), 15-26
  5. S. Yu. Slavyanov, W. Lay, Special functions. A unified theory based on singularities., Oxford University Press, New York, 2000, xvi+293 pp.
  6. E. R. Arriola, J. S. Dehesa, A. Zarzo, "Spectral properties of the biconfluent Heun differential equation", J. Comput. Appl. Math., 37:1-3 (1991), 161-169
  7. А. Ф. Никифоров, В. Б. Уваров, Специальные функции математической физики, Наука, М., 1984, 344 с.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2013 Samara State Technical University

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).