Note on complexity of quantum transmission processes


Cite item

Full Text

Abstract

In 1989, Ohya propose a new concept, so-called Information Dynamics (ID), to investigate complex systems according to two kinds of view points. One is the dynamics of state change and another is measure of complexity. In ID, two complexities $ C^{S} $ and $ T^{S} $ are introduced. $ C^{S} $ is a measure for complexity of system itself, and $ T^{S} $ is a measure for dynamical change of states, which is called a transmitted complexity. An example of these complexities of ID is entropy for information transmission processes. The study of complexity is strongly related to the study of entropy theory for classical and quantum systems. The quantum entropy was introduced by von Neumann around 1932, which describes the amount of information of the quantum state itself. It was extended by Ohya for C*-systems before CNT entropy. The quantum relative entropy was first defined by Umegaki for $ \sigma $-finite von Neumann algebras, which was extended by Araki and Uhlmann for general von Neumann algebras and *-algebras, respectively. By introducing a new notion, the so-called compound state, in 1983 Ohya succeeded to formulate the mutual entropy in a complete quantum mechanical system (i.e., input state, output state and channel are all quantum mechanical) describing the amount of information correctly transmitted through the quantum channel. In this paper, we briefly review the entropic complexities for classical and quantum systems. We introduce some complexities by means of entropy functionals in order to treat the transmission processes consistently. We apply the general frames of quantum communication to the Gaussian communication processes. Finally, we discuss about a construction of compound states including quantum correlations.

About the authors

Noboru Watanabe

Tokyo University of Science

Email: watanabe@is.noda.tus.ac.jp

References

  1. M. Ohya, "Information dynamics and its application to optical communication processes", Quantum Aspects of Optical Communications (Paris, 1990), Lecture Notes in Physics, 378, Springer, Berlin, 1991, 81-92
  2. M. Ohya, "On compound state and mutual information in quantum information theory", Information Theory, IEEE Trans., 29:5 (1983), 770-774
  3. M. Ohya, D. Petz, Quantum entropy and its use, Texts and Monographs in Physics, Berlin, Springer Verlag, 1993, viii+335 pp.
  4. M. Ohya, I. Volovich, Mathematical foundations of quantum information and computation and its applications to nano- and bio-systems, Theoretical and Mathematical Physics, Springer, Dordrecht, 2011, xx+759 pp.
  5. R. S. Ingarden, A. Kossakowski, M. Ohya, Information dynamics and open systems. Classical and quantum approach, Fundamental Theories of Physics, 86, Kluwer Academic Publ., Dordrecht, 1997, x+307 pp.
  6. M. Ohya, N. Watanabe, "Construction and analysis of a mathematical model in quantum communication processes", Electronics and Communications in Japan, Part 1, 68:2 (1985), 29-34
  7. L. Accardi, M. Ohya, "Compound channels, transition expectations, and liftings", Appl. Math. Optim., 39:1 (1999), 33-59
  8. K.-H. Fichtner, W. Freudenberg, V. Liebscher, Beam splittings and time evolutions of Boson systems, Forschungsergebnise der Fakultät für Mathematik und Informatik, Math/Inf/96/39, 1996, 105 pp.
  9. J. von Neumann, Die Mathematischen Grundlagen der Quantenmechanik (German), Springer Verlag, Berlin, 1932, v+262 pp.
  10. M. Ohya, "Some aspects of quantum information theory and their applications to irreversible processes", Rep. Math. Phys., 27:1 (1989), 19-47
  11. K. Urbanik, "Joint probability distribution of observables in quantum mechanics", Studia Math., 21:1 (1961), 117-133
  12. R. Schatten, Norm ideals of completely continuous operators, Ergebnisse der Mathematik und ihrer Grenzgebiete, 27, Springer Verlag, Berlin, New York, 1970, vii+81 pp.
  13. H. Umegaki, "Conditional expectation in an operator algebra. IV. Entropy and information", Kōdai Math. Sem. Rep., 14 (1962), 59-85
  14. H. Araki, "Relative entropy for states of von Neumann algebras", Publ. Res. Inst. Math. Sci., 11:3 (1976), 809-833
  15. B. W. Schumacher, M. A. Nielsen, "Quantum data processing and error correction", Phys. Rev. A, 54:4 (1996), 2629–2635
  16. A. Uhlmann, "Relative entropy and the Wigner-Yanase-Dyson-Lieb concavity in interpolation theory", Commun. Math. Phys., 54:1 (1977), 21-32
  17. M. Ohya, D. Petz, N. Watanabe, "On capacity of quantum channels", Probab. Math. Statist., 17:1, Acta Univ. Wratislav. No. 1928 (1997), 179-196
  18. M. Ohya, D. Petz, N. Watanabe, "Numerical computation of quantum capacity", Proc. of the International Quantum Structures Association (Berlin, 1996), Internat. J. Theoret. Phys., 37:1 (1998), 507-510
  19. M. Ohya, N. Watanabe, "Quantum capacity of noisy quantum channel", Quantum Communication and Measurement, 3 (1997), 213-220
  20. M. Ohya, N. Watanabe, Foundation of Quantum Communication Theory (in Japanese), Makino Pub. Co., 1998
  21. P. Shor, The quantum channel capacity and coherent information, Lecture Notes, MSRI Workshop on Quantum Computation, 2002
  22. H. Barnum, M. A. Nielsen, B. W. Schumacher, "Information transmission through a noisy quantum channel", Phys. Rev. A, 57:6 (1998), 4153-4175
  23. C. H. Bennett, P. W. Shor, J. A. Smolin, A. V. Thapliyalz, "Entanglement-assisted capacity of a quantum channel and the reverse Shannon theorem", Inform. Theory, IEEE Trans., 48:10 (2001), 2637–2655
  24. B. W. Schumacher, "Sending entanglement through noisy quantum channels", Phys. Rev. A, 54:4 (1996), 2614–2628
  25. M. Ohya, N. Watanabe, Comparison of mutual entropy-type measures, TUS preprint

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2013 Samara State Technical University

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).