Blow-up of solutions of Cauchy problem for nonlinear Schrödinger equation
- Authors: Sakbaev V.Z.1
-
Affiliations:
- Moscow Institute of Physics and Technology (State University)
- Issue: Vol 17, No 1 (2013)
- Pages: 159-171
- Section: Articles
- URL: https://journals.rcsi.science/1991-8615/article/view/34702
- DOI: https://doi.org/10.14498/vsgtu1159
- ID: 34702
Cite item
Full Text
Abstract
In this work we study the effect of time finiteness of the existence of Cauchy problem for nonlinear Schrödinger equation solution. Together with the ill-posed Cauchy problem we consider its neighborhood in the space of operators, representing Cauchy problem. We explore the convergence of sequence of solutions of Cauchy problems with the operators, approximating the initial Hamiltonian.
Full Text
##article.viewOnOriginalSite##About the authors
Vsevolod Zhanovich Sakbaev
Moscow Institute of Physics and Technology (State University)
Email: fumi2003@mail.ru
Doctor of physico-mathematical sciences, Associate professor
References
- А. А. Самарский, В. А. Галактионов, С. П. Курдюмов, А. Г. Михайлов, Режимы с обострением в задачах для квазилинейных параболических уравнений, Наука, М., 1987, 478 с.
- Э. Митидиери, С. И. Похожаев, "Априорные оценки и отсутствие решений нелинейных уравнений и неравенств в частных производных", Тр. МИАН, 234, Наука, М., 2001, 3-383
- H. Fujita, "On the blowing up of solutions of the Cauchy problem for ", J. Fac. Sci. Univ. Tokyo Sect. I, 13 (1966), 109-124
- С. Н. Кружков, Лекции по уравнениям с частными производными, МГУ, М., 1970
- О. А. Олейник, Е. В. Радкевич, Уравнения с неотрицательной характеристической формой, Московск. ун-т, М., 2010, 360 с.
- В. Ж. Сакбаев, "Задача Коши для линейного дифференциального уравнения с вырождением и усреднение аппроксимирующих ее регуляризаций", Уравнения в частных производных, СМФН, 43, РУДН, М., 2012, 3-172
- R. T. Glassey, "On the blowing up of solution to the Cauchy Problem for nonlinear Schrödinger equations", J. Math. Phys, 18:9 (1977), 1794-1797
- F. Merle, Y. Tsutsumi, " convergence of blow-up solutions for nonlinear Shrodinger equation with critical power nonlinearity", J. Differ. Equations, 84:2 (1990), 205-214
- P. E. Zhidkov, "Korteweg-de Vries and nonlitear Schrödinger equations: qualitative theory. Lecture Notes in Math", Lecture Notes in Mathematics, 1756, Springer-Verlag, Berlin, 2001, vi+147 pp.
- P. Baras, J. Goldstein, "The heat equation with a singular potential", Trans. Amer. Math. Soc., 284:1 (1984), 121-139
- V. A. Galaktionov, I. V. Kamotski, "On nonexistance of Baras-Goldstein type for higher-order parabolic eqations with singular potential", Trans. Amer. Math. Soc., 362:8 (2010), 4117-4136
- N. Mizoguchi, F. Quiros, J. L. Vazquez, "Multiple blow-up for a porous medium equation with reaction", Math. Ann., 350:4 (2011), 801-827
- В. Ж. Сакбаев, "Об усреднении квантовых динамических полугрупп", ТМФ, 164:3 (2010), 455-463
- V. A. Galaktionov, J. L. Vazquez, "Necessary and sufficient conditions for complete blow-up and extinction for one-dimensional quasilinear heat equations", Arch. Rational Mech. Anal., 129:3 (1995), 225-244
- V. Zh. Sakbaev, "On the properties of ambiguity and irreversibility of dynamical maps of initial data space of Cauchy problems", p-Adic Numbers Ultrametric Anal. Appl., 4:4 (2012), 306-318
- J. Ginibre, G. Velo, "On a class of nonlinear Schrödinger equations. I. The Cauchy problem, general case", J. Funct. Anal., 32:1 (1979), 1-32
- O. Kavian, "A remark on the blowing-up solutions to the Cauchy problem for nonlinear Schrödinger equation", Trans. Amer. Math. Soc., 299:1 (1987), 192-203
- A. Pazy, "Semigroups of linear operators and applications to partial differential equations", Applied Mathematical Sciences, 44, Springer-Verlag, New York, 1983, viii+279 pp.
- С. М. Никольский, Приближение функций многих переменных и теоремы вложения, Наука, М., 1969, 480 с.
- С. Г. Крейн, Линейные дифференциальные уравнения в банаховых пространствах, Наука, М., 1967, 464 с.
Supplementary files

