The solution of equations of ideal gas that describes Galileo invariant motion with helical level lines, with the collapse in the helix

Cover Page

Cite item

Abstract

We consider the equations of ideal gas dynamics in a cylindrical coordinate system with the arbitrary equation of state and one two-dimensional subalgebra from the optimum system of an 11-dimensional Lie algebra of differentiation operators of the first order. The basis of the subalgebra operators consists of the operator of Galilean transfer and the operator of movement on spiral lines. Invariants of operators set representation: type of speed, density and entropy. After substitution of the solution representation into the equations of gas dynamics the assumption of the linear relation of a radial component of speed and spatial coordinate is entered. Transformations of equivalence which are allowed by a set of equations of gas dynamics after substitution of the solution representation are written down. For the state equation of polytropic gas all four solutions depending on an isentropic exponent are found. For each case the equations of world lines of gas particles motion are written down. The transition Jacobian from Eulerian variables to Lagrangian is found. The instants of collapse of gas particles are determined by value of the Jacobian. As a result the solutions describe movement on straight lines from a helicoid surface. Movements of the particles on equiangular spirals lying on a paraboloid and on hyperbolic spirals, lying on a cone.

About the authors

Yuliya Valer'evna Yulmukhametova

Mavlyutov Institute of Mechanics, Ufa Centre of the Russian Academy of Sciences

Email: taryv@yandex.ru, yulmukhametova.yulya@yandex.ru, tarasova_yulya@mail.ru
Candidate of physico-mathematical sciences, Researcher

References

  1. Мамонтов Е. В., "Инвариантные подмодели ранга два уравнений газовой динамики", ПМТФ, 40:2 (1999), 50-55
  2. Хабиров С. В., Аналитические методы в газовой динамике, Гилем, Уфа, 2003, 192 с.
  3. Вишератин К. Н., Калашник М. В., "Нелинейные акустические колебания в закрученных газовых потоках", Изв. Акад. наук. МЖГ, 49 (2014), 125-135
  4. Юлмухаметова Ю. В., "Подмодели газовой динамики с линейным полем скоростей", Сиб. электрон. матем. изв., 2012, № 9, 208-226
  5. Головин С. В., "Точные решения для эволюционных подмоделей газовой динамики", ПМТФ, 43:4 (2002), 3-14
  6. Овсянников Л. В., Лекции по основам газовой динамики, Наука, М., 1981, 368 с.
  7. Хабиров С. В., Чиркунов Ю. А., Элементы симметрийного анализа дифференциальных уравнений механики сплошной среды, НГТУ, Новосибирск, 2012, 659 с.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Samara State Technical University

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).