Modeling of the extracellular information field influence in dynamics of the formation and development risks of a cancer tumor

Cover Page

Cite item

Abstract

The dynamic nonlinear 2D model of the extracellular information field influence in the dynamics of risks of the cancer tumor formation and development has been considered. Physical properties of the extracellular matrix, availability of nutrients, oxygen concentration, pH of the extracellular matrix, interaction with stromal cells, and etc. are considered as the main external parameters forming the informational metabolic potential. Within the framework of the constructed 2D analytical model, it has been shown that microinteraction through the extracellular matrix of emerging cancer cells through a dynamic informational metabolic profile significantly influences the risk dynamics of the formation and development of a cancer tumor. It is shown that, depending on the structure of the 2D informational metabolic profile, a number of characteristic nonlinear features such as 2D bifurcations, beats, chaos, imposed on integral dynamic curves resembling by the Gompertz function, describing the probable risks of the formation and development of a cancerous tumor, are appeared. A comparison of the results of our analytical model under consideration with the results of the modeling of other authors on the consideration of chaotic and bifurcation dynamics in the “tumor–immune cluster–virus” system has been made. As a result of the quantitative estimations carried out within framework of the proposed theoretical model, we can formulate a method for assessing the risks of developing malignant neoplasms, characterized in that subfebrile temperature, caspase level, colposcopic Raid index, which determine the threshold for the formation of malignant neoplasms, and identified as the risk factors.

About the authors

Olga Igorevna Artemova

Penza State University

Email: Artyomovaolg@gmail.com

Vladimir Dmitrievich Krevchik

Penza State University

Email: physics@pnzgu.ru
Doctor of physico-mathematical sciences, Professor

Mikhail Borisovich Semenov

Penza State University

Email: Misha29.02.1@gmail.com
Doctor of physico-mathematical sciences, Professor

References

  1. Muir A., Danai L. V., Vander Heiden M. G., "Microenvironmental regulation of cancer cell metabolism: implications for experimental design and translational studies", Disease Models & Mechanisms, 11:8 (2018), dmm035758
  2. Eftimie R., Macnamara C. K., Dushoff J., Bramson J. L., Earn D.J.D., "Bifurcations and chaotic dynamics in a tumour-immune-virus system", Math. Model. Nat. Phenom., 11:5 (2016), 65-85
  3. Al-Mahdi A. M., Khirallah M. Q., "Bifurcation analysis of a model of cancer", Eur. Sci. J., 12:3 (2016), 67-83
  4. Fadaka A., Ajiboye B., Ojo O. et al., "Biology of glucose metabolization in cancer cells", J. Oncology Sci., 3:2 (2017), 45-51
  5. Колобов А. В., Анашкина А. А., Губернов В. В., Полежаев А. А., "Математическая модель роста опухоли с учетом дихотомии миграции и пролиферации", Компьютерные исследования и моделирование, 1:4 (2009), 415-422
  6. Жукова И. В., Колпак Е. П., "Математические модели злокачественной опухоли", Вестн. С.-Петербург. ун-та. Сер. 10. Прикл. матем. Информ. Проц. упр., 2014, № 3, 5-18
  7. Kolobov A. V., Gubernov V. V., Polezhaev A. A., "Autowaves in the model of infiltrative tumour growth with migration-proliferation dichotomy", Math. Model. Nat. Phenom., 6:7 (2011), 27-38
  8. Altrock P. M., Liu L. L., Michor F., "The mathematics of cancer: integrating quantitative models", Nature Reviews Cancer, 15:12 (2015), 730-745
  9. Кучумов А. Г., "Математическое моделирование и биомеханический подход к описанию развития, диагностики и лечения онкологических заболеваний", Российский журнал биомеханики, 14:4 (2010), 42-69
  10. Anastasiou D., "Tumour microenvironment factors shaping the cancer metabolism landscape", British Journal of Cancer, 116:3 (2017), 277-286
  11. Boroughs L. K., DeBerardinis R. J., "Metabolic pathways promoting cancer cell survival and growth", Nature Cell Biology, 17:4 (2015), 351-359
  12. Aringazin A. K., Dahnovsky Y., Krevchik V. D., Semenov M. B., Ovchinnikov A. A., Yamamoto K., "Two-dimensional tunnel correlations with dissipation", Phys. Rev. B, 68 (2003), 155426

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Samara State Technical University

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).