Development of a predictive model for two- and three-component inorganic systems in aqueous solutions using spectral analysis
- Authors: Massalov K.Y.1, Moshchenskaya E.Y.2
-
Affiliations:
- National Engineering Physics Institute “MEPhI”
- Samara State Technical University
- Issue: Vol 29, No 1 (2025)
- Pages: 174-186
- Section: Short Communications
- URL: https://journals.rcsi.science/1991-8615/article/view/311050
- DOI: https://doi.org/10.14498/vsgtu2120
- EDN: https://elibrary.ru/ZDTCBW
- ID: 311050
Cite item
Full Text
Abstract
This study presents an algorithm for analyzing spectral data through mathematical modeling, constructing prognostic models, and selecting optimal wavelength intervals for designing LED-based multisensor systems. The algorithm is implemented in Python and validated using experimental data from aqueous solutions of inorganic salts.
Key methodological aspects include:
– Application of multivariate calibration methods (PLS regression and multiple linear regression);
– Utilization of Shapley values to identify informative spectral wavelengths;
– Systematic enumeration to determine optimal wavelength intervals.
The developed model enables accurate prediction of two- and threecomponent systems in metal salt solutions using partial spectral data rather than full-spectrum analysis. Cross-validation demonstrates that:
– The model achieves comparable accuracy to full-spectrum approaches;
– The solution remains computationally efficient while maintaining predictive reliability.
The results confirm the model’s adequacy for quantitative spectral analysis, particularly in resource-constrained environments where partial spectral data acquisition is advantageous.
Full Text
##article.viewOnOriginalSite##About the authors
Kirill Y. Massalov
National Engineering Physics Institute “MEPhI”
Author for correspondence.
Email: kirill.massalov@yandex.ru
ORCID iD: 0009-0003-6214-7470
https://www.mathnet.ru/person228575
Master’s Student; Senior Researcher; Dept. of Elementary Particle Physics; Institute of Nuclear Physics and Engineering1
Russian Federation, 115409, Moscow, Kashirskoe shosse, 31Elena Y. Moshchenskaya
Samara State Technical University
Email: lmos@rambler.ru
ORCID iD: 0000-0002-1070-3151
https://www.mathnet.ru/person39351
Cand. Chem. Sci., Associate Professor; Associate Professor; Dept. of Analytical and Physical Chemistry2
Russian Federation, 443100, Samara, Molodogvardeyskaya st., 244References
- Dubrovkin J. Data Compression in Spectroscopy. Cambridge Scholars Publ., 2022, 355 pp.
- Rodionova O. E. Chemometric approaches for analysis of large chemical data arrays, Ros. Khim. Zh., 2006, vol. 50, no. 2, pp. 128–144 (In Russian). EDN: HTUUSZ.
- Smilde A., Bro R., Geladi P. Multi-Way Analysis: Applications in the Chemical Sciences. Chichester, John Wiley & Sons, 2004, xiv+381 pp. DOI: https://doi.org/10.1002/0470012110.
- Bogomolov A. Yu. Optical multisensor systems in analytical spectroscopy, J. Anal. Chem., 2022, vol. 77, no. 3, pp. 277–294. EDN: YORSQC. DOI: https://doi.org/10.1134/S1061934822030030.
- Bogomolov A. Multivariate process trajectories: capture, resolution and analysis, Chemom. Intel. Lab. Syst., 2011, vol. 108, no. 1, pp. 49–63. DOI: https://doi.org/10.1016/j.chemolab.2011.02.005.
- Galyanin V., Melenteva A., Bogomolov A. Selecting optimal wavelength intervals for an optical sensor: A case study of milk fat and total protein analysis in the region 400–1100 nm, Sens. Actuat. B: Chem., 2015, vol. 218, pp. 97-104. EDN: UFYADR. DOI: https://doi.org/10.1016/j.snb.2015.03.101.
- Moshchenskaya E. Yu., Stifatov B. M. Modeling "composition-property" diagrams for the "aluminum-silicon" system, J. Sib. Fed. Univ. Chem., 2023, vol. 16, no. 1, pp. 107–115 (In Russian). EDN: JWRAGD.
- Moshchenskaya E. Yu., Stifatov B. M. Investigation of the possibility of using theoretical modeling methods to determine the eutectic composition of binary alloys, Vestn. Tversk. Gos. Univ., Ser. Khimiia, 2021, no. 3, pp. 105–122 (In Russian). EDN: JDZAEI. DOI: https://doi.org/10.26456/vtchem2021.3.12.
- Holland P. W., Welsch R. E. Robust regression using iteratively reweighted least-squares, Commun. Stat–Theor. M., 1977, vol. 6, no. 9, pp. 813–827. DOI: https://doi.org/10.1080/03610927708827533.
- Wegelin J. A. A Survey of Partial Least Squares (PLS) Methods, with Emphasis on the Two-Block Case, Technical Report 371. Washington, Univ. of Washington, 2000, 44 pp. https://stat.uw.edu/research/tech-reports/survey-partial-least-squares-plsmethods-emphasis-two-block-case.
- Pedregosa F., Varoquaux G., Gramfort A., et. al. Scikit-learn: Machine learning in Python, J. Mach. Learn. Res., 2011, vol. 12, pp. 2825–2830.
- Lundberg S. M., Lee S.-I. A unified approach to interpreting model predictions, In: Proc. Intern. Conf. Neural Inform. Proces. Systems, 2017, pp. 4768–4777, arXiv: 1705.07874 [cs.AI]. DOI: https://doi.org/10.48550/arXiv.1705.07874.
- de Myttenaere A., Golden B., Le Grand B., Rossi F. Mean Absolute Percentage Error for regression models, Neurocomputing, 2016, vol. 192, pp. 38-48. DOI: https://doi.org/10.1016/j.neucom.2015.12.114.
Supplementary files
